
Distributed Hierarchical File Systems strike back in
the Cloud

Mahmoud Ismail⇤†, Salman Niazi†, Mauritz Sundell‡, Mikael Ronström‡, Seif Haridi⇤†, and Jim Dowling⇤†
⇤ KTH - Royal Institute of Technology, † Logical Clocks AB, ‡ Oracle AB

{maism, haridi, jdowling}@kth.se, {mahmoud, salman, seif, jim}@logicalclocks.com,
{mauritz.sundell,mikael.ronstrom}@oracle.com

Abstract—Cloud service providers have aligned on availabil-
ity zones as an important unit of failure and replication for
storage systems. An availability zone (AZ) has independent
power, networking, and cooling systems and consists of one or
more data centers. Multiple AZs in close geographic proximity
form a region that can support replicated low latency storage
services that can survive the failure of one or more AZs.
Recent reductions in inter-AZ latency have made synchronous
replication protocols increasingly viable, instead of traditional
quorum-based replication protocols. We introduce HopsFS-CL,
a distributed hierarchical file system with support for high-
availability (HA) across AZs, backed by AZ-aware synchronously
replicated metadata and AZ-aware block replication. HopsFS-CL
is a redesign of HopsFS, a version of HDFS with distributed
metadata, and its design involved making replication protocols
and block placement protocols AZ-aware at all layers of its stack:
the metadata serving, the metadata storage, and block storage
layers. In experiments on a real-world workload from Spotify, we
show that HopsFS-CL, deployed in HA mode over 3 AZs, reaches
1.66 million ops/s, and has similar performance to HopsFS when
deployed in a single AZ, while preserving the same semantics.

I. INTRODUCTION

The journey to the cloud is fraught. Databases made the tran-
sition from strongly consistent single-host systems (relational
databases) to highly available (HA), eventually consistent
distributed systems (NoSQL systems), and then back to
strongly consistent (but also distributed) systems (Spanner [1],
CockroachDB [2]). In this paper, we show that distributed
hierarchical file systems are completing a similar journey,
going from strongly consistent POSIX-compliant file systems
to object stores (with their weaker consistency models, but
high availability across data centers), and back to distributed
hierarchical file systems that are HA across data centers,
without any loss in performance.

Over the past decade, advances in networking for public
clouds have reduced network latencies between geographically
co-located data centers to close to where local area network
latencies were a decade ago [3]–[5]. Public cloud providers
such as Amazon [6], Google [7], and Microsoft [8] offer cloud
infrastructures that are built around regions and availability
zones (AZ). Regions are places spread across the world
with large geographic distances between regions. A single
region consists of one or more AZs (typically 3 AZs) that
are physically separate data centers with independent power
sources, cooling, and networking. AZs in the same region are
connected through low-latency, high throughput network links.

Storage services that are HA within a region (they can survive
the failure of one or more AZs) can assume much lower and
more reliable inter data center network latencies (< 1ms) than
storage storage services that are HA across different regions
(⇡ 10� 100ms) [9], [10].

Despite having weaker semantics than POSIX-like file
systems, the need for a region-level HA file system in the cloud
has made object stores the de facto file system in the cloud. For
example, Amazon’s S3 object store has become the de facto
storage platform for AWS, but its deficiencies compared to
POSIX-like file systems include eventually consistent directory
listings [11], [12], eventually consistent read-after-update for
objects, and the lack of atomic rename. Other object stores, such
as Google cloud storage (GCS) and Azure blob store have
strengthened S3’s semantics to provide strongly consistent
directory listings through the use of horizontally scalable
strongly consistent metadata [13]–[15]. However, none of these
object stores support atomic directory rename, instead, they
require the copying of data over the network [16]–[18], which
is problematic for both modern data lake frameworks [19]–[21]
and SQL-on-Hadoop frameworks that both use atomic directory
rename to provide ACID transaction support for updates [22].
What all of these object stores have in common is that they
provide HA across AZs, by replicating files (objects) between
AZs. Currently, however, there are no distributed hierarchical
file systems that we are aware of, including HopsFS [23], that
provide high availability over AZs.

In this paper, we introduce HopsFS-CL, a distributed hierar-
chical file system with integrated support for high availability
across AZs. HopsFS-CL is a redesign of HopsFS, an open
source, next-generation version of Apache HDFS [24] with
strongly consistent horizontally scalable metadata that provides
higher throughput and enables larger clusters than HDFS [23].
HopsFS provides POSIX-like semantics and supports consistent
directory listings, and rename. HopsFS is composed of three
main layers; the metadata storage layer (by default provided by
an in-memory open-source database, NDB [25]), the metadata
serving layer, and the block storage layer. To make HopsFS
HA over AZs, we redesigned all three layers to make them
AZ-aware, introducing new AZ-aware synchronous replication
protocols for the metadata storage layer (NDB) and block
storage layers (HopsFS). We also redesigned the file system
metadata operations, such as read and fstat, to be AZ-aware,
preferring reading replicas local to the client’s AZ - enabled



by synchronous replication protocols, where a full replica of
metadata is available on all AZs. In experiments based on a real-
world workload from Spotify, we show that deploying HopsFS-
CL across three AZs incurs no extra overhead, and delivers
similar performance to deploying HopsFS in one AZ, delivering
up to 1.66 million ops/sec. We also show that HopsFS-CL
outperforms a leading file system backed by an object store,
CephFS [26], by up to 2.14X .

II. BACKGROUND
In this section, we describe the basic components of HopsFS-
CL, introducing both HopsFS [23] and NDB [25].

A. HopsFS
HopsFS [23] is an open-source next-generation distribution of
HDFS, that replaces the HDFS single metadata service with
a distributed metadata service where the metadata is stored
fully normalized in a shared-nothing, in-memory distributed
database. HopsFS consists of three main layers; the metadata
storage layer, the metadata serving layer, and the block storage
layer, as shown in Figure 1.

1) The Metadata Storage Layer
The default and recommended metadata storage layer for
HopsFS is NDB which is the MySQL Cluster storage en-
gine [25]. HopsFS provides a pluggable architecture to support,
in principle, any database with support for transactions and row-
level locking [23]. Other features such as application defined
partitioning (ADP) and distribution aware transactions (DAT)
are desirable to achieve high performance on HopsFS [27],
see Section II-B. The file system metadata is stored as tables
in NDB, and the file system operations are implemented as
transactions on the stored metadata.

2) The Metadata Serving Layer
HopsFS supports multiple stateless metadata servers (NNs) that
can concurrently access the file system metadata stored in the
metadata storage layer (NDB) through the use of transactions.
The metadata servers use a combination of row-level locks and
application defined locks when manipulating the metadata in
order to ensure strong consistency of the metadata [23]. To
yield high performance, the metadata servers use hierarchical
(implicit) locking, that is, the locks are only taken on the
inode(s) and the rest of the associated metadata is read using
read committed. The metadata servers are responsible for
responding to file system requests from potentially thousands
of concurrent clients. HopsFS provides the clients with a
selection policy to ensure load balancing of the requests
between the metadata servers. HopsFS clients select a random
metadata server and stick with it until it fails, whereupon
they select a random, surviving metadata server. Moreover,
HopsFS implements a leader election protocol to elect one of
the metadata servers as a leader to be responsible for internal
housekeeping operations [28].

3) The Block Storage Layer
Whenever a client uploads a file into HopsFS, the file is split
into multiple blocks (128 MB by default), then the blocks are
replicated to different block storage nodes (DNs), 3 nodes by

NutFS 
Clients
NutFS 
Clients

HopsFS 
Clients

NDB

Metadata
 Storage 

Metadata
 Serving 

Block
 Storage 

DNs

NNs

Fig. 1: The architecture diagram of HopsFS. HopsFS consists of three main
layers, the metadata storage layer (NDB by default), the metadata serving
layer where there is one metadata server that is elected as leader, and the
block storage layer where the files’ data reside except for small files < 128
KB which reside on the metadata storage layer with their metadata.

default. Users can define a topology for the block storage nodes
which can then be used to do ensure fault tolerance in the case
of rack-level failures. The block storage layer is responsible
only for large files, > 128 KB, while the small files,< 128
KB, are stored with the files’ metadata in the metadata storage
layer (NDB) [29].

B. NDB
NDB is the storage engine of MySQL Cluster [25], [30].
MySQL Cluster is a shared-nothing, in-memory distributed rela-
tional database that provides high throughput, high availability
and real-time performance.

1) Architecture
A typical NDB setup consists of at least one management node
(for configuration and arbitration during network partitions),
along with multiple NDB datanodes for storing the table
data and handling transactions that access/manipulate the
stored data. NDB supports application defined partitioning
(ADP), that is, the application controls how the tables are
partitioned across NDB datanodes. Transactions are managed
by transaction coordinators (TC), with one such TC per
NDB datanode. NDB has performance optimizations such as
distribution aware transactions (DAT), where a hint (partition
key) based on the partitioning scheme can be specified to
start a transaction on the NDB datanode containing the data
accessed by the transaction. NDB transactions support only
read committed isolation level, but row level locks can be used
by the applications to provide stronger isolation guarantees to
applications. HopsFS implements an application-level locking
protocol that provides higher throughput than attainable by the
database serializing conflicting transactions [23].

NDB datanodes are organized into node groups (replication
groups). Given a cluster with N NDB datanodes, and R as
the replication factor, the number of node groups is N/R.
A partition is a fragment of data stored and replicated by a
node group. Each NDB datanode in a node group stores a
replica of the partition assigned to the node group. The default
replication factor in NDB is 2, that is, each node group can
tolerate the failure of 1 NDB datanode. For each partition, one



NDB datanode will be assigned the primary replica, while the
other datanodes from the same node group will be assigned as
backup replicas.

2) NDB Commit Protocol
NDB uses the Strict Two Phase Locking protocol [31] for
concurrency control. The protocol consists of two phases. First,
it acquires all the required locks, and then it releases the locks
only once the transaction reaches the commit point. To avoid
deadlocks, NDB always locks the row on primary replica first
then the rows on backup replicas.

NDB implements a variant of Two Phase commit (2PC)
protocol that is non-blocking and distributed [30]. The NDB
commit protocol leverages the linear 2PC protocol [32] for
each row in the transaction to decrease the number of messages
exchanged compared to classic 2PC [30]. Figure 2 shows the
NDB commit protocol in action while committing a transaction
that writes two rows into two different partitions. The commit
protocol starts at the transaction coordinator (TC) by sending
the Prepare message to the primary replica, which in turns
forwards the message to the backup replicas. Once the last
backup replica finishes processing the Prepare message, it
sends the Prepared message to the TC. Then, the TC sends the
Commit message in the reverse order to the backup replicas
and traverses back to the primary replica. Due to the reverse
order of the Commit message, the TC is no longer the commit
point. Instead, the primary replica commits the changes and
releases the acquired locks, and then sends the Committed
message to the TC. Once the TC receives all the Committed
messages from all primary replicas, it acknowledges the client
node that the transaction is committed, and it is safe to start

1. Commit transaction10. Ack

TC

Pr1

Br1

B`r1

2. 
Pr

ep
are

 

3.
 P

re
pa

re
 

4.
 P

re
pa

re
 5.

 P
re

pa
re

d 
6.

 C
om

m
it 

7.
 C

om
m

it 
8.

 C
om

m
it 

9. 
Com

mitt
ed

10
. C

om
ple

te 

11
. C

om
pl

et
e 

12
. C

om
pl

et
e 

13
. C

om
pl

et
ed

 

2. Prepare 9. Committed
10. Complete 

Pr2

Br2

B`r2

3.
 P

re
pa

re
 

8.
 C

om
m

it 

11
. C

om
pl

et
e 

4.
 P

re
pa

re
 

7.
 C

om
m

it 

12
. C

om
pl

et
e 

13. Com
pleted 

5. Prepared 

6. Com
m

it 

Start Transaction.
 write r1 
 write r2
Commit Transaction.

Fig. 2: A simple description of the NDB commit protocol to commit a
transaction writing two rows (r1, r2) to two different partitions. Pr1 is the
primary replica for row r1 while Br1 and B‘r1 are the backup replicas.
Similarly, Pr2 is the primary replica for row r2 while Br2 and B‘r2 are the
backup replicas.

reading your updates. In parallel, for performance, the TC
sends the Complete message to the replicas to release the locks
on the backup replicas and clean the memory used during
the transaction. There is a short time window, at the end of
the transaction, but before the backup replicas receive the
Complete message, where the backup replicas might be out
of date. Therefore, the default behaviour in NDB is to always
redirect read committed reads to the primary replicas. For
reads with shared or exclusive locks, it is always guaranteed
to read the latest committed data since all locked reads go to
the primary replica.

In the case of failure of a TC (which typically blocks
transactions in other 2PC implementations), NDB implements
a take-over protocol that is used by a new TC to rebuild
the transaction state of ongoing transactions that have lost
their TC. Since all replicas reside in the same node group,
a failure of an NDB datanode in the node group does not
prevent the protocol from making progress. NDB implements
node failure and heartbeat protocols to ensure agreement on
which nodes have failed among surviving nodes in the cluster.
To ensure liveness, NDB uses different timeouts such as
TransactionInactiveTimeout to abort the transaction if the client
abandoned it, as well as TransactionDeadlockDetectionTimeout
to abort the transaction in cases of node failures, high load,
and deadlocks. HopsFS uses these timeouts to implement a
transaction retry mechanism providing backpressure to NDB.
Moreover, NDB implements a global checkpoint protocol across
node groups to allow system recovery in cases of cluster
failures.

III. CHALLENGES TO DEPLOY HOPSFS IN THE CLOUD

The challenges to deploy HopsFS in the cloud are as follows:
a) C1: HA deployments of HopsFS across AZs

We cannot deploy HA HopsFS across AZs, since the three
layers of HopsFS are not AZ aware. That is, we cannot
guarantee the availability of HopsFS in case of AZ failure.

b) C2: AZ local communications.
The latency between two nodes in the same AZ is lower

than across two different AZs in the same region, as shown
in Table I for three AZs in us-west1 region in Google Cloud
Platform. Also, network traffic within the same AZ is typically
free, whereas the cost of network traffic across AZs may not be
insignificant [33]. For these reasons, it is desirable to minimize
cross-AZ network traffic.

us-wes1-a us-west1-b us-west1-c
us-west1-a 0.247 0.360 0.372
us-west1-b 0.360 0.251 0.399
us-west1-c 0.372 0.399 0.249

TABLE I: Measured latencies in milliseconds between two different virtual
machines in Google Compute Engine (GCP) located on different AZs in
us-west1 region.

We introduce HopsFS-CL in order to address the aforemen-
tioned issues (C1-C2). HopsFS-CL tackles these challenges
by efficiently deploying across AZs as well as introducing AZ-
awareness at the three layers of HopsFS-CL; the metadata stor-
age, see Section IV-A, the metadata serving, see Section IV-B,
and the block storage layers, see Section IV-C. HopsFS-CL



NutFS 
Clients
NutFS 
Clients

HopsFS-CL 
Clients

NN3 NN4

NDB Datanodes

N3 N4 M3

DNs

Zone 3

NDB Datanodes

N1 N2M2

NutFS 
Clients
NutFS 
Clients
HopsFS-CL 

Clients

NN1 NN2

DNs

Zone 2

NDB 
Arbitrator

M1

Zone 1

Fig. 3: A deployment diagram for HopsFS-CL. HopsFS-CL runs across three
different AZs (Zone1, Zone2, and Zone3). Both Zone2 and Zone3 contain
a replica of the metadata stored in the metadata storage layer, a management
node, a set of metadata servers, a set of block storage servers (DNs), and a
set of HopsFS-CL clients. The metadata storage layer has a replication factor
2, where N1 and N3 form a node group and N2 and N4 form another node
group. A third management node runs on Zone1 and acts as an arbitrator in
the case of a network partition between Zone2 and Zone3.

consistently uses synchronous replication protocols at all layers
to ensure that a full replica of the file system resides at each
AZ. By doing so, we address the challenge C1. As each AZ
has a full copy of the file system, we are able to redesign
metadata and file system protocols as AZ-aware, preferring
AZ local operations, thus, addressing challenge C2.

IV. AZ-AWARENESS THROUGHOUT THE STACK
In this section, we present our approach to achieving AZ-
aware high availability in HopsFS-CL by showing the different
techniques and algorithms introduced across all the layers from
the metadata storage layer to the metadata serving layer and
the block storage layer.

A. Metadata Storage Layer
The default metadata storage layer is NDB. To add AZ
awareness into NDB, we introduce three new features to
NDB. Firstly, we introduce a new configuration parameter
(LocationDomainId) that assigns each node in NDB to a
specific AZ within the cloud. Secondly, we introduce a new
table option Read Backup that allows transactions to read from
the table’s primary and backup replicas consistently using
Read Committed, that required changes to the NDB commit
protocol, see Section II-B2. Thirdly, we introduce another table
option Fully Replicated that enables the table’s partitions to be
replicated on all NDB datanodes in the cluster which trades off
slower writes for potentially faster reads. Moreover, we changed
the ordering mechanisms used by NDB to account for different
AZs. Also, we adjusted the transaction coordinators selection
policy to take AZs and table options into consideration.

1) Deploying across Three AZs
With the use of the newly introduced locationDomainId, we
can mark NDB datanodes from the same node group to be
on different AZs to ensure high availability of their data. For
example, as shown in Figure 3, N1 and N3 are part of the same
node group but are deployed on two different AZs, Zone2

NutFS 
Clients
NutFS 
Clients
HopsFS-CL 

Clients

NN3 NN4

NDB Datanodes

N3 N4 M3

DNs

Zone 3

NDB Datanodes

N1 N2M2

NutFS 
Clients
NutFS 
Clients
HopsFS-CL 

Clients

NN1 NN2

DNs

Zone 2

NutFS 
Clients
NutFS 
Clients

HopsFS-CL 
Clients

NN5 NN6

NDB Datanodes

N5 N6 M1

DNs

Zone 1

Fig. 4: A deployment diagram for HopsFS-CL. HopsFS-CL runs across three
different AZs (Zone1, Zone2, and Zone3). Each zone contains a replica
of the metadata stored in the metadata storage layer, a management node, a
set of metadata servers, a set of block storage servers (DNs), and a set of
HopsFS-CL clients. The metadata storage layer has a replication factor of
3, where N1, N3, and N5 form a node group and N2, N4, and N6 form
another node group. The management node M1 acts as the arbitrator in the
case of a network partition between AZs.

and Zone3, respectively. Similarly, N2 and N4 are placed
on different AZs. With this configuration, the metadata of
HopsFS-CL is replicated across Zone2 and Zone3. Each AZ
Zone2 and Zone3 has an NDB management node. Also, a
third management node added at Zone1 to act as arbitrator
in case of network partition scenarios. Moreover, we can take
advantage of all 3 AZs by increasing the NDB replication
factor to 3, see Figure 4. N1, N3, and N5 form a node group
while N2, N4, N6 form the other node group.That is, the
HopsFS-CL metadata is replicated across the 3 AZs.

2) Failures
Failures could happen at the machine level or even more
drastically at the AZ level. NDB guarantees that a failure
in a node in a node group will not block the currently running
transactions from proceeding and will not bring the cluster
down as long as there is still other alive nodes in the node
groups, see Section II-B2. The surviving nodes in the node
group will upgrade their backup partitions to primary partitions
to account for the failed primary partitions in the failed node.
For example, in Figure 4, If N1 failed, then other nodes
in the node group N3 and N5 will upgrade their backup
partitions to account for the failed primary partitions in N1.
Network partitions could arise between any two zones Zone2
and Zone3, see Figure 3, which would result in a split-
brain scenario. To avoid such a scenario, we added a third
management node on Zone1 that acts as an arbitrator in case
of network partitions. During network partitions, the arbitrator
accepts the first set of database nodes to contact it and tells the
remaining set to shutdown. The database nodes will assume
they are in a network partition and shutdown gracefully if they
failed to contact the arbitrator. Similarly, in Figure 4, each AZ
has a management node, M1 is elected as the arbitrator. If
M1 failed, another management node will be elected as the
arbitrator. The setup in Figure 3 can tolerate the failure of
1 AZ, while the setup in Figure 4 can tolerate up to 2 AZs
failure given the existence of an external management node
acting as arbitrator (fortunately, cloud providers have support
for regions with four or more AZs).



3) Read Backup and Fully Replicated features
We introduce the Read Backup feature as a table option.
Internally, when committing a transaction, we ensure that
the changes on the primary replica and the backup replicas
are completed before responding to the client ensuring that
the client will be able to read his own updates on either
the primary or the backup replicas. We changed the commit
protocol described in Section II-B2 to delay sending the
acknowledgement to the client until all the replicas are up
to date. That is, the TC delays sending the Ack message to
the client until receiving the Completed message from all the
backup replicas. Therefore, in Figure 2, the Ack message will
be sent after receiving all the Completed messages, and as such
the Ack message number will be 14 instead of 10. Moreover,
we introduce the Fully Replicated feature as a table option.
When committing a transaction on a Fully Replicated table, we
use the linear 2PC on all the primary replicas of the changed
rows on all node groups. Similar to the Read Backup, we delay
the transmission of the Ack message until the reception of all
Completed messages.

4) NDB datanodes ordering
NDB orders the database nodes for a transaction based on
distribution awareness (DAT), using the hint (partition key)
provided at the start of the transaction, then based on the
proximity score. The proximity score between two nodes is a
measure of the expected latency between them. We modified
the proximity score order to take into account the addition of
the AZs, through the LocationDomainId. We define the new
proximity score in ascending order as follows:

1) Two nodes on the same host and the same AZ.
2) Two nodes on different hosts but within the same AZ.
3) Two nodes on different hosts but in two different AZs.

5) Transaction Coordinator Selection Policy
We adjusted the transaction coordinator selection policy to
select the best transaction coordinator whenever we start a
transaction to ensure that the transaction coordinator is located
within the same AZ as the caller. In HopsFS, file system
operations are implemented as transactions on the file system
metadata stored in NDB. When a metadata server (NN) in
HopsFS receives a request, it will start a transaction on NDB.
NDB first uses the hint supplied by HopsFS (partition key) to
locate the nodes that hold the partitions for the transaction’s
data. The nodes returned based on the hint are ordered with
the primary replica first, followed by backup replicas. Then,
we determine which node of these nodes should be selected
as the transaction coordinator for that transaction based on
the locationDomainId, table options, and the proximity score
described in Section IV-A4. As a rule of thumb, we always
select the transaction coordinator located on the same AZ as
the metadata server. There are four different cases for selecting
the transaction coordinator depending on the table options as
follows:

a) Case 1: The table is read backup enabled.
We select the local replica to our AZ, it could be the primary

or a backup replica.

b) Case 2: The table is fully replicated.
We use all the nodes for that table, not only the ones based

on the partition key. For a fully replicated table we will have
a replica of the table’s partitions on every node, so we select
a node in the same AZ based on the proximity score.

c) Case 3: The table is neither fully replicated nor read
backup enabled, and there are nodes based on the
partition key for that table.

This is the default behaviour. We select the node that reside
in the same AZ. It could be the primary replica or a backup
replica. However, if the backup replica was selected, all the
reads will be rerouted to the node holding the primary replica
unlike the read backup and fully replicated tables.

d) Case 4: There are no nodes based on the provided
partition key.

This is the fallback mechanism where no nodes have been
found for the provided partition key. In that case, we use all the
NDB datanodes, and we select a node based on the proximity
score. That is, preferring nodes in the same AZ. However,
similar to Case3, if a backup replica was selected, all the
reads will be rerouted to the nodes holding the primary replica.

After selecting the best transaction coordinator, NDB runs
the transaction on the selected transaction coordinator. If the
transaction coordinator doesn’t have some/all of the requested
data, then it will issue requests to other NDB datanodes while
respecting the AZ awareness. The latency between AZs is
usually higher, and inter-AZ bandwidth costs money, while
intra-AZ bandwidth is usually free, see Table I. Thus, in
HopsFS-CL, we ensure that all the tables are Read Backup
enabled, to force NDB to route read transactions to both primary
and backup replicas, which we show in Section V-E reduces
network traffic between the AZs.

B. Metadata Serving Layer
The metadata servers (NNs) are responsible for serving requests
from the file system clients. We introduce a configuration
parameter locationDomainId to the metadata servers following
the same approach as the metadata storage layer. Administrators
can set the locationDomainId for each of their metadata servers.
However, it has to be the same id that was set for the metadata
storage to ensure AZ-local file system transactions.

1) Deploying across Three AZs
With the use of the newly introduced locationDomainId, we
can tag metadata servers with their AZ, as well as HopsFS-Cl
clients. For example, in Figure 3, NN1 and NN2 reside in
Zone2, similarly NN3 and NN4 reside in Zone3. Also, we
can set the same for HopsFS-CL clients as shown in Figure 3.
Moreover, we can take advantage of the 3 AZs by deploying
metadata servers and clients across all of them, see Figure 4.
In both setups, we have the leader metadata server running on
NN4 in Zone3.

2) Failures
The metadata servers are stateless servers. Therefore, HopsFS-
CL can tolerate the failure of up to N � 1 metadata servers
for a cluster with N metadata servers. The leader metadata
server can go down due to machine failure, network failure,



or AZ failure. A leader election protocol [28] ensures a new
leader is elected.

3) Metadata server selection policy
We implemented a selection policy for the HopsFS-CL clients
to ensure AZ-local metadata servers, that is, the clients can
choose metadata servers running on the same AZ as them. The
metadata servers are stateless with no communication between
them except indirectly via their leader election protocol [28].
Therefore, we extended the leader election protocol to allow
each metadata server to report its locationDomainId at every
leader election round, by default every 2 seconds. When
creating a new HopsFS-CL client, first it requests the list
of active metadata servers from the leader metadata server.
Then, the client chooses the metadata server with the same
locationDomainId. Otherwise, a random metadata server is
chosen. If the locationDomainId was set to 0, then we also fall
back to a random metadata server. Systems running on top of
HopsFS-CL can ensure that their applications run on the same
AZ as the metadata servers by setting the locationDomainId
to the same AZ.

C. Block Storage Layer
The Block storage layer is responsible for storing blocks of
data for large files, > 128KB, in HopsFS-CL. The files are
divided into blocks, typically 128MB, and replicated across
typically 3 block storage servers for high availability.

1) Deploying across Three AZs
We can use the same concept of the locationDomainId, and then
devise a block placement algorithm to ensure that at least one
of the three replicas resides on another AZ for fault tolerance.
However, the rack-aware block placement policy in HopsFS
(for on-premises installations) can be adapted to work with AZs
instead of racks. Instead of introducing a new configuration
parameter, we can use the existing topology configuration file
to configure the block storage servers as if they are running on
2 or 3 racks, where the racks are in fact the AZs. With such a
configuration, the current block placement policies will ensure
that at least one replica resides on every AZ. Thus, ensuring
high availability at the block storage layer, in the event of
failure of an AZ. On the other hand, for small files, < 128KB,
we ensure the locality and high availability of the data, since
the NVMe disks that are used to store the small files’ data
are co-located with their NDB datanodes. The datanodes are
configured such that the primary and the backup replicas reside
on different AZs, see Figure 3 and Figure 4.

2) Failures
Block storage servers can fail due to machine failures or AZ
wide failures. The block replication level is configurable while
the default is 3. That is, HopsFS-CL tolerates the failure of
up to 2 block storage servers. Once a failure is detected a
re-replication event is triggered by the leader metadata server
to maintain the block replication level. In case of small files,
the failures are handled by the metadata storage layer, see
Section IV-A2.

V. EVALUATION
In this section, we evaluate the performance of HopsFS-
CL (with AZ awareness) against vanilla HopsFS. Also, we
benchmarked HopsFS-CL in comparison to a leading file
system backed by an object store, CephFS. All our experiments
were run on virtual machines (VMs) on Google Compute
Engine in us-west1 region with 32vCPU and 29 GB of memory.
Depending on the system configuration, we ran our experiments
either on one AZ us-west1-b or across three AZs us-west1-
a, us-west1-b, and us-west1-c. We used HopsFS v2.8.2.5,
NDB v7.6.8, and Ceph v13.2.4. To evaluate our system we
used a real-world industrial workload from Spotify’s Hadoop
cluster [23]. We used the benchmarking tool introduced in [23].
In our experiments, we focus on the evaluation of the metadata
storage and the metadata serving layer, the traditional metadata
bottleneck in distributed hierarchical file systems. We did not
evaluate the performance of the block layer as concurrency
control is applied at the metadata layer, while the block layer
scales linearly to tens of thousands of HopsFS clients and
datanodes. As such, our experiments only used empty files,
files of zero length.

A. Experiment Setup
a) HopsFS and HopsFS-CL setup:

We benchmarked different deployments of (vanilla) HopsFS
to construct the baseline for the comparison against HopsFS-
CL. For each setup, we deployed NDB cluster with 12 NDB
datanodes where each NDB datanode is configured with 27
threads locked to separate CPUs, see Table II. The metadata
replication factor is the NDB replication factor which controls
the number of replicas for the file system metadata. We
deployed HopsFS in four different setups. Each setup is
identified as an ordered tuple where the first item is the NDB
replication factor and the second item is the number of AZs
used. For example, HopsFS (2,1) is a deployment of HopsFS
in 1 AZ with the metadata replication factor set to 2. After
constructing the baseline, we deployed HopsFS-CL in HA
setup with 3 AZs while varying the NDB replication factor.
Figure 3 shows the HA setup where metadata replication factor
is set to 2. Similarly, Figure 4 shows the HA setup where the
metadata replication factor is set to 3.

Type Count Responsibility
LDM 12 tables’ data shards.
TC 7 on going transactions on the database nodes.
RECV 3 inbound network traffic.
SEND 2 outbound network traffic.
REP 1 replication across clusters.
IO 1 I/O operations.
MAIN 1 schema management.

TABLE II: The NDB CPU configuration. We used 27 CPUs. For each type,
we locked the number of required CPUs.

b) CephFS:
A typical CephFS cluster consists of a monitor node (MON),

a set of object storage daemons (OSD), and a set of metadata
servers (MDS). The OSD nodes act as the storage layer for
the metadata of the file system, as well as the data. For a fair
comparison, we used 12 OSD nodes similar to the 12 NDB
nodes in HopsFS and HopsFS-CL. In HopsFS/HopsFS-CL,



the metadata servers are stateless servers that are, in parallel,
manipulating the file system’s metadata stored in NDB. On
the other hand, in CephFS, each metadata server is responsible
for a subtree of the file system where it caches the file system
metadata and periodically writes the list of operations to an
operation log in the OSDs. CephFS uses a dynamic partitioning
algorithm to partition the file system namespace between all
metadata servers in the cluster [34]. We deployed CephFS
in high availability setup across 3 AZs with the metadata
replication factor set to 3. At first, we used the CephFS Hadoop
plugin to test the performance of CephFS, however, the results
were unreliable due to some unidentified bottlenecks in the
plugin as it was not tested by the CephFS community for years.
Therefore, we decided to use the CephFS native kernel driver
to mount the file system to the experiment servers. We have
three different setups for CephFS:

1) CephFS: This is the default and recommended setup for
CephFS where the metadata servers (MDSs) use the default
dynamic partitioning algorithm to load balance subtrees across
the metadata servers.

2) CephFS - DirPinned: In this setup, to improve through-
put, we manually assign each metadata server (MDS) to a
subtree of the file system. Thus, we manually enforce the load
balancing of the file system subtrees across the metadata servers
- at the cost of location transparency for clients, overloading
the MDS in case of hotspots, and increased failover time for
metadata server failures.

3) CephFS - SkipKCache: In our experiments, inodes are
created and then right after they are available for the file system
clients to read/write. In CephFS, whenever a kernel client wants
to operate on an inode, the MDS server responsible for that
inode grants the corresponding capabilities to that client. Then,
the kernel client caches the files’ metadata in memory as long
as they still have a valid capability from the MDS. However,
that comes at a cost, that the MDSs have to keep track of
all clients capabilities, so they can notify the clients’ when a
change happen to an inode capabilities which will potentially
leads to higher failover time. In this setup, we always skip the
kernel cache in order to evaluate the actual performance of the
MDS.

B. Throughput
1) Industrial workload
We benchmarked all different setups of HopsFS, HopsFS-CL,
and CephFS using a real-world workload based on operational
traces from Spotify’s Hadoop cluster [23]. Figure 5 shows
the throughput of all the 9 setups introduced in Section V-A
while varying the number of metadata servers in the cluster.
HopsFS deployed in 1 AZ with a metadata replication factor
set to 2 (HopsFS (2, 1)) delivers up to 1.62 million ops/sec
with 60 metadata servers. These performance numbers are
30% higher than the last reported benchmarks on an on-
premise cluster [23] and are mainly due to the performance
improvements in HopsFS and the use of servers with 25%
more CPUs. By increasing the metadata replication factor
to 3 (HopsFS (3, 1)), the throughput drops to 1.56 million

200K

400K

600K

800K

1M

1.2M

1.4M

1.6M

1.8M

1 6 12 18 24 36 48 60

o
p

s/
se

c

Number of Metadata Servers

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS
CephFS - DirPinned

CephFS - SkipKCache

Fig. 5: The throughput of HopsFS, HopsFS-CL, and CephFS for Spotify’s
workload.

ops/sec. Deploying a highly available HopsFS cluster across
3 AZs drops the throughput by 17% in case of 2 metadata
replicas (HopsFS (2, 3)) and by 22% in case of 3 metadata
replicas (HopsFS (3, 3)). The main reason for the performance
drop of HopsFS across 3 AZs is the higher network latency
between AZs and the lack of AZ awareness in HopsFS. That
is, inter-server connections cross more AZ boundaries than
strictly neccessary - keeping more communication local within
AZs should improve performance. HopsFS-CL provides AZ
awareness and delivers similar throughput to HopsFS when
deployed in one AZ, as expected. HopsFS-CL configured with
2 metadata replicas (HopsFS-CL (2, 3)) on 3 AZs delivers up
to 17% higher throughput compared to HopsFS (HopsFS (2,
3)). For 3 metadata replicas on 3 different AZs, HopsFS-CL
delivers even higher gains in throughput (up to 36% more than
HopsFS). We see that the performance gap between HopsFS
and HopsFS-CL keeps increasing for an increasing number
of metadata servers in the cluster beyond 24. Our conclusion
is that network I/O becomes a bottleneck, and adding AZ
awareness helps improve throughput.

The default and recommended CephFS setup delivers up
to 0.77 million ops/sec. For the same configuration, HopsFS-
CL delivers 2.14X higher throughput than CephFS. However,
the CephFS throughput does not increase linearly as one
would expect for an increasing number of metadata servers.
Therefore, we benchmarked another setup of CephFS (CephFS-
DirPinned) where we manually assigned different subtrees to
different metadata servers, as shown in Figure 5. However, the
throughput drops after 24 metadata servers due to the single
threaded nature of the MDS and the disk utilization, as shown
in Section V-D1.

Moreover, we benchmarked a third setup of CephFS (CephFS
- SkipKCache) where we skipped the kernel cache of the
mounted CephFS to evaluate the actual number of requests
handled by the MDS. By skipping the kernel cache, CephFS
handles only 28K ops/second with 60 metadata servers.
Figure 6 shows the actual number of metadata requests handled
per metadata server. CephFS-DirPinned can handle up to 4233
requests per second with 1 MDS and it drops to a 1178 requests
per second with 60 MDSs which correlates with previously
published benchmarks in the CephFS paper [26]. HopsFS-CL
handles up to 23X more requests than the CephFS - DirPinned,



 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

1 6 12 18 24 36 48 60

T
h

ro
u

g
h

p
u

t 
P

er
 M

D
S 

(o
p

s/
se

c)

Number of Metadata Servers

HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS
CephFS - DirPinned

CephFS - SkipKCache

Fig. 6: The actual throughput per metadata server for HopsFS-CL and CephFS
using Spotify’s workload. The Y-axis is in log scale of base 2.

which is expected for CephFS, since most of the requests are
handled locally by the kernel cache, however, for HopsFS-CL,
all the requests go to the metadata servers where no client
cache is involved.

2) Synthetic workload
In this experiment, we ran micro-benchmarks for the most
popular file system operations; mkdir, createFile, readFile, and
deleteFile using a cluster with 60 metadata servers. Figure 7
shows the throughput for the different systems: HopsFS,
HopsFS-CL, and CephFS. First we notice that increasing the
metadata replication factor from 2 to 3 drops the throughput
of HopsFS and HopsFS-CL for file system operations that
mutate the metadata, such as mkdir, createFile, and deleteFile.
For instance, the throughput of HopsFS deployed in one AZ
drops by up to 45%. Similarly, the throughput drops for
three AZ deployments of HopsFS and HopsFS-CL by up to
23%. However, for read file operation, increasing the metadate
replication factor from 2 to 3 accounts for up to 6% increase
in the throughput. HopsFS-CL delivers up to 11.8X higher
throughput than CephFS for file system operations that mutate
the metadata (mkdir, createFile, and deleteFile). On the other
hand, for read file operation, CephFS delivers up to 1.9X
higher throughput of HopsFS-CL due to the use of the kernel
cache in CephFS. By skipping the kernel cache, HopsFS-CL
delivers up to 81X the throughput of CephFS.

16K

32K

64K

128K

256K

512K

1M

2M

4M

mkdir createFile deleteFile readFile

o
p

s/
se

c

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS - DirPinned
CephFS - SkipKCache

Fig. 7: The throughput of HopsFS, HopsFS-CL, and CephFS for the most
common file system operations using 60 metadata servers. The Y-axis is in
log scale of base 2.
C. End-to-End latency
In this experiment, we measured the end to end latency for
file system operations while varying the number of metadata

servers in the cluster. We benchmarked different setups for
HopsFS, HopsFS-CL, and CephFS using the Spotify’s workload.
Figure 8 shows that HopsFS and HopsFS-CL deployments
achieve almost constant average end-to-end latency, ⇡ 8� 14
milliseconds, while varying the number of metadata servers
in the cluster. HopsFS-CL achieves up to 35% lower latency
compared to HopsFS deployments across three AZs (HopsFS
(2,3) and HopsFS (3,3)) due to their lack of support for AZ
awareness. HopsFS-CL achieves up to 9X lower average
latency then CephFS. CephFS - DirPinned achieves up to
1.9X lower average latency than HopsFS-CL due to the use
of the kernel cache. By skipping the kernel cache in CephFS,
HopsFS-CL achieves up to 16X lower average latency then
CephFS.

Moreover, we measured the latency taken to create, read, and
delete a file in an unloaded cluster. An unloaded cluster is a
cluster which delivers 50% of the full throughput of the cluster.
We used 60 metadata servers for the different deployments of
HopsFS, HopsFS-CL, and CephFS. Figure 9 shows the 50th,
90th, and 99th percentile for the latency of createFile, readFile,
and deleteFile operations. The noticeable difference is that
CephFS delivers significantly lower latency than HopsFS and
HopsFS-CL. The main reason is that CephFS processes most
of file system operations either locally within the kernel cache
or in the main memory of the metadata servers. However, when
increasing the load on metadata servers, the latency increases,
as shown in Figure 8, due to the single threaded nature of the
metadata server and the journal flushing time which reduces
available resources for processing file system operations.

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 6 12 18 24 36 48 60

A
v

er
ag

e 
L

at
en

cy
 (

m
il

li
se

co
n

d
s)

Number of Metadata Servers

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS
CephFS - DirPinned

CephFS - SkipKCache

Fig. 8: The average end-to-end latency of file system operations for Spotify’s
workload. The Y-axis is in log scale of base 2.

D. Resource utilization
We collected resource utilization statistics while running the
experiments in Section V-B1.

1) The metadata storage layer
In our experiments, HopsFS and HopsFS-CL use NDB as
the storage layer for the file system metadata, while CephFS
uses their object storage daemons (OSD) as the storage layer.
Figure 10(a) shows the CPU utilization of the storage layer in
HopsFS, HopsFS-CL, and CephFS. For HopsFS and HopsFS-
CL, the CPU utilization of NDB increases for an increasing
number of metadata servers in the cluster until it reaches
a plateau after 12 metadata servers. On the other hand, for



 0
 10
 20
 30
 40
 50
 60

(a) createFile

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS - DirPinned
CephFS - SkipKCache

 0
 2
 4
 6
 8

 10
 12
 14

L
at

en
cy

 (
m

il
li

se
co

n
d

s)

(b) readFile

 0
 5

 10
 15
 20
 25
 30

50th 90th 99th

(c) deleteFile

Fig. 9: The 50th, 90th, and 99th percentile of the latency of createFile, readFile,
and deleteFile operation for HopsFS, HopsFS-CL, and CephFS. We used 60
metadata servers with 50% load.

CephFS, the CPU utilization of the OSD remains almost
constant even when the number of metadata servers is increased.
The NDB cluster datanodes were configured with 27 threads
locked to 27 CPUs, see Table II. Figure 11 shows the average
CPU utilization per thread type for the highly available HopsFS-
CL (HopsFS-CL (3,3)). The CPU utilization of NDB reaches a
peak after 24 metadata servers. However, HopsFS and HopsFS-
CL still provide higher throughput while increasing the number
of metadata servers, see Figure 5, and that is due to more
batching of requests by NDB. Even though the REP thread
saturates at almost 90%, we had no ongoing replication across
clusters, and the reason for the high utilization is that idle
threads will try to help other busy threads such as RECV and
SEND to share their load.

The network utilization of the NDB increases linearly for
an increasing number of metadata servers, since more file
system operations require more data to be read from NDB,
see Figure 12(a) and Figure 12(b). On the other hand, CephFS
serves most of the file system requests from either the kernel
cache or the metadata server without requiring to contact the
metadata storage layer (OSD). Therefore, network utilization
on the OSD is quite low and doesn’t change that much with
the increased number of metadata servers. The OSD is neither

 0

 20

 40

 60

 80

 100

1 6 12 18 24 36 48 60

C
P

U
 U

ti
li

za
ti

o
n

 (
%

) (a) Per Metadata storage node

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS
CephFS - DirPinned

CephFS - SkipKCache

 0

 20

 40

 60

 80

 100

1 6 12 18 24 36 48 60

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Number of Metadata Servers

(b) Per Metadata server

Fig. 10: The average CPU utilization per (a) metadata storage node and (b)
metadata server. HopsFS and HopsFS-CL uses NDB as the metadata storage
layer while CephFS uses a native object store (OSD).

 0

 20

 40

 60

 80

 100

1 6 12 18 24 36 48 60

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Number of Metadata Servers

Main
IO

REP
RECV

SEND
LDM

TC
Average

Fig. 11: The average CPU utilization per NDB thread type for HopsFS-CL
(3,3).

CPU intensive nor network intensive, but, it is disk intensive,
see Figure 12(d).

The disk utilization of the OSD increases linearly for an
increasing number of metadata servers, until it reaches a plateau
after 24 metadata servers, see Figure 12(d). The main reason
for the increased load is the journalling done by the metadata
server for each operation, where, the MDS periodically flush
the journal to the OSDs. The journalling along with the MDS’
single-threaded design explains the drop in throughput that can
be seen after 24 metadata server for CephFS - DirPinned, see
Figure 5. The disk utilization for NDB doesn’t increase that
much while increasing the number of metadata servers. As
NDB is primarily an in-memory database, disk utilization only
increases for the writing of the REDO log and checkpoints
that are used for recovery.

2) The metadata serving layer
The metadata server in HopsFS and HopsFS-CL uses a granular
locking mechanism allowing it to fully utilize all of the CPUs
on its servers, see Figure 10(b). On the other hand, the metadata
server in CephFS is single-threaded and uses a global lock
preventing it from fully utilizing all available CPUs on its
servers. In HopsFS and HopsFS-CL, the metadata servers
process up to one order of magnitude more requests through
the network than CephFS, see Figure 13(a) and Figure 13(b).

10M

50M

100M

150M

200M

250M

300M

1 6 12 18 24 36 48 60

M
B

/
se

c

(a) Network Read

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS
CephFS - DirPinned

CephFS - SkipKCache

10M

50M

100M

150M

200M

250M

300M

1 6 12 18 24 36 48 60

(b) Network Write

0.1M

0.2M

0.3M

0.4M

1 6 12 18 24 36 48 60

M
B

/
se

c

Number of Metadata Servers

(c) Disk Read

10M

25M

50M

75M

100M

1 6 12 18 24 36 48 60

Number of Metadata Servers

(d) Disk Write

Fig. 12: The average network and disk utilizations of the metadata storage
layer. HopsFS and HopsFS-CL uses NDB as the metadata storage layer while
CephFS uses underling object store (OSD).



20M

40M

60M

80M

1 6 12 18 24 36 48 60

M
B

/
se

c

(a) Network Read

HopsFS (2,1)
HopsFS (3,1)
HopsFS (2,3)

HopsFS (3,3)
HopsFS-CL (2,3)
HopsFS-CL (3,3)

CephFS
CephFS - DirPinned

CephFS - SkipKCache

20M

40M

60M

80M

1 6 12 18 24 36 48 60

(b) Network Write

1M

2M

3M

4M

5M

1 6 12 18 24 36 48 60

M
B

/
se

c

Number of Metadata Servers

(c) Disk Read

1M

2M

3M

4M

5M

1 6 12 18 24 36 48 60

Number of Metadata Servers

(d) Disk Write

Fig. 13: The average network and disk utilizations per metadata server for
HopsFS, HopsFS-CL, and CephFS.

The main reason is that in CephFS most of the file system
metadata requests are handled directly by the kernel cache
in the client side. HopsFS, HopsFS-CL, and CephFS do not
use that much disk in the process since all work either is
done in memory or through the network, see Figure 13(c) and
Figure 13(d).

E. AZ-Local Reads
HopsFS-CL enables read backup feature on the metadata
storage layer (NDB), enabling clients to read from the backup
replicas (when shared or exclusive locks are not taken), instead
of always going to the primary replica. That is, clients can read
from a replica within the current AZ. We ran an experiment
using the Spotify’s workload for two setups read backup
enabled and read backup disabled. Then, we collected the
statistics from NDB for both setups. Figure 14 shows the
effect of enabling and disabling read backup, for clarity we
show only the first 24 partitions. Figure 14(b) shows that all
requests go to the primary replicas in case of read backup
being disabled, while Figure 14(a) shows that the requests are
balanced between the backup replicas and the primary replica.

F. Failures
The main motivation for supporting AZ awareness in HopsFS-
CL is to tolerate failures of up to 2 AZs in a cloud region.
The highly available HopsFS-CL uses an NDB cluster with
replication factor set to 3. That is, HopsFS-CL can tolerate
up to 2 failures of NDB datanodes within the same node
group. Fortunately, with AZ awareness enabled, HopsFS-CL
can tolerate the failure of up to 2 AZs given the existence of
an external management node acting as arbitrator. HopsFS-CL
metadata servers are stateless, and their failures shouldn’t affect
the whole file system. Therefore, a cluster with N metadata
servers can tolerate failures of up to N � 1 metadata servers.
HopsFS-CL also supports AZ awareness at the block storage
layer, where a block is guaranteed to be replicated across the 3
AZs. That is, a failure of 1 or 2 AZs won’t bring the file system
down. Moreover, in split brain cases where a network partition
occurs between any two different AZs, the NDB management
node in the third AZ will act as an arbitrator, shutting down
servers in one of the network partitions. If an AZ has network

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
o

ta
l 

R
ea

d
s 

(%
)

(a) ReadBackup Enabled

Replica 1 Replica 2 Replica 3

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
o

ta
l 

R
ea

d
s 

(%
)

Partition Number

(b) ReadBackup Disabled

Fig. 14: As we can see for 24 partitions, without read backup all reads go the
primary (which may not be AZ local), while with read backup enabled, we
have the expected number of reads for the primary and the backup replicas
50% and 25%, respectively. This shows that reads are AZ-local.

connectivity with the arbitrator, then the file system within this
AZ will continue to function as normal. Otherwise, if an AZ
doesn’t have network connectivity with the arbitrator, it will
shut down the file system partition in that AZ.

VI. RELATED WORK
Object stores are commonly used as cloud storage backends
in public clouds, such as Amazon S3, Google Cloud Storage,
and Azure Blob Storage. Public cloud providers offer different
types of storage buckets allowing data objects to be replicated
across AZs or regions within the same geographical area. Since
these object stores are API-request rate-limited, we did not
compare performance with them. Other Object stores, such as
Ceph provide a file system interface. CephFS [26] is a POSIX-
compliant distributed file system that stores its metadata and
data as objects on the Ceph object storage nodes (OSD). On top
of the OSDs, CephFS provides metadata servers (MDS) that
manage the file systems’ files and directories, and coordinate
the security and consistency of the file system. File system
operations on the MDS are single threaded due to the use of the
MDS global lock which in turns limit the CPU utilization and
performance of the MDS [35]. Ceph is popular for deployments
on public or private cloud. Similar to HopsFS-CL, CephFS can
be configured to be highly available across AZs by correctly
placing the object storage nodes across AZs and then defining
the unit of failure as the AZ.

File systems such as BlueSky [36] and SCFS [37] provide
a file system backed by cloud storage. However, due to the
weaker consistency semantics provided by the cloud storage,
SCFS implements a coordination service on top to provide
strong consistency independently of the guarantees provided
by the storage clouds. On the other hand, HopsFS-CL provides
strong consistency semantics based on locking primitives
introduced in HopsFS, as well as, providing high availability
across AZs. CalvinFS [38] is a distributed file system that
uses a distributed shared-nothing database for file system
metadata management. The file system operations are executed
as deterministic transactions that are batched and logged into a
global meta-log that is replicated across data centers. With the
use of the meta-log, CalvinFS can survive the failure of a whole
data center. However, CalvinFS is optimized for operations



on single files rather than subtree operations that might take
considerably longer time compared to traditional file systems.

VII. CONCLUSIONS

In this paper, we introduced HopsFS-CL, a highly available
distributed hierarchical file system with native support for
AZ awareness using synchronous replication protocols. In
experiments using a Spotify workload, we showed that our AZ
aware optimizations for a HA HopsFS-CL cluster deployed
across 3 AZs delivers up to 36% higher throughput than HA
HopsFS. Also, we showed that HopsFS-CL delivers up to
2.14X times the throughput of a default CephFS setup. In future
work, we will integrate HopFS-CL with native cloud storage as
a block layer to make storage and inter-AZ networking costs
competitive with native cloud object stores.

ACKNOWLEDGMENT

This work is supported by the ExtremeEarth project funded
by European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No. 825258.

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[2] “Cockroachdb,” https://www.cockroachlabs.com/, [Online; accessed 10-
Jun-2019].

[3] R. Urata, H. Liu, X. Zhou, and A. Vahdat, “Datacenter interconnect
and networking: From evolution to holistic revolution,” in 2017 Optical
Fiber Communications Conference and Exhibition (OFC), March 2017,
pp. 1–3.

[4] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” ACM SIGCOMM computer communication review, vol. 45,
no. 4, pp. 183–197, 2015.

[5] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 123–137.

[6] “Amazon ec2,” https://aws.amazon.com/ec2/, [Online; accessed 5-Jan-
2019].

[7] “Google compute engine,” https://cloud.google.com/compute/, [Online;
accessed 5-Jan-2019].

[8] “Microsoft azure,” https://azure.microsoft.com, [Online; accessed 5-Jan-
2019].

[9] “Aws inter-region latency,” https://www.cloudping.co/, [Online; accessed
5-Jan-2019].

[10] “Google cloud platform: Geography and regions,” https:
//cloud.google.com/docs/geography-and-regions, [Online; accessed
12-Sep-2019].

[11] “Amazon s3 consistency model,” https://docs.aws.amazon.com/
AmazonS3/latest/dev/Introduction.html, [Online; accessed 5-Jan-2019].

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in ACM SIGOPS operating
systems review, vol. 41, no. 6. ACM, 2007, pp. 205–220.

[13] “Google cloud storage consistency,” https://cloud.google.com/storage/
docs/consistency, [Online; accessed 5-Jan-2019].

[14] “How google cloud storage offers strongly consistent object listing
thanks to spanner,” https://cloud.google.com/blog/products/gcp/how-
google-cloud-storage-offers-strongly-consistent-object-listing-thanks-
to-spanner, [Online; accessed 1-Jul-2019].

[15] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows azure storage:
a highly available cloud storage service with strong consistency,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 143–157.

[16] “S3guard: Consistency and metadata caching for s3a,”
https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-
aws/s3guard.html, [Online; accessed 5-Jan-2019].

[17] “Hadoop azure support: Azure blob storage,” https://hadoop.apache.org/
docs/r3.1.2/hadoop-azure/index.html#Atomic Folder Rename, [Online;
accessed 12-Sep-2019].

[18] “Google cloud storage: mv - move/rename objects,” https://
cloud.google.com/storage/docs/gsutil/commands/mv, [Online; accessed
12-Sep-2019].

[19] “Delta lake: Reliable data lakes at scale,” https://delta.io/, [Online;
accessed 12-Sep-2019].

[20] “Apache iceberg: open table format for huge analytic datasets,” https:
//iceberg.incubator.apache.org/, [Online; accessed 12-Sep-2019].

[21] “Apache hudi: Upserts and incremental processing on big data,” http:
//hudi.apache.org/, [Online; accessed 12-Sep-2019].

[22] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O’Malley,
J. Pandey, Y. Yuan, R. Lee, and X. Zhang, “Major technical advancements
in apache hive,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 2014, pp. 1235–1246.

[23] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, and
M. Ronström, “Hopsfs: Scaling hierarchical file system metadata using
newsql databases,” in 15th USENIX Conference on File and Storage
Technologies (FAST 17). USENIX Association, 2017, pp. 89–104.

[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass storage systems and technologies (MSST),
2010 IEEE 26th symposium on. Ieee, 2010, pp. 1–10.

[25] “MySQL Cluster CGE,” http://www.mysql.com/products/cluster/, [On-
line; accessed 5-Jan-2018].

[26] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[27] M. Ismail, S. Niazi, M. Ronström, S. Haridi, and J. Dowling, “Scaling
hdfs to more than 1 million operations per second with hopsfs,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2017, pp. 683–688.

[28] S. Niazi, M. Ismail, G. Berthou, and J. Dowling, “Leader election using
newsql database systems,” in Proceedings of the 15th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable
Systems - Volume 9038, 2015, pp. 158–172.

[29] S. Niazi, M. Ronström, S. Haridi, and J. Dowling, “Size matters:
Improving the performance of small files in hadoop,” in Proceedings
of the 19th International Middleware Conference, ser. Middleware ’18,
2018, pp. 26–39.

[30] M. Ronström, MySQL Cluster 7.5 Inside and Out. Books on Demand,
2018.

[31] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1987.

[32] J. Gray, “Notes on data base operating systems,” in Operating Systems,
An Advanced Course. London, UK, UK: Springer-Verlag, 1978, pp.
393–481.

[33] “Google compute engine pricing,” https://cloud.google.com/compute/
pricing, [Online; accessed 5-Jan-2019].

[34] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in Proceedings
of the 2004 ACM/IEEE Conference on Supercomputing, ser. SC ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–.

[35] “Cephs,” https://www.slideshare.net/XiaoxiChen3/cephfs-jewel-mds-
performance-benchmark, [Online; accessed 5-Jan-2019].

[36] M. Vrable, S. Savage, and G. M. Voelker, “Bluesky: A cloud-backed file
system for the enterprise,” in Proceedings of the 10th USENIX conference
on File and Storage Technologies, 2012, pp. 19–19.

[37] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves, M. Correia, M. Pasin,
and P. Verissimo, “Scfs: A shared cloud-backed file system.” in USENIX
Annual Technical Conference, 2014, pp. 169–180.

[38] A. Thomson and D. J. Abadi, “Calvinfs: Consistent WAN replication
and scalable metadata management for distributed file systems,” in 13th
USENIX Conference on File and Storage Technologies (FAST 15). Santa
Clara, CA: USENIX Association, 2015, pp. 1–14.


