Optimizing Computation & Data
Movement for Fresher Features

Sarah Wooders

PhD Student @ UC Berkeley Sky Computing (prev. RISELab)

FEATURE STORE

SUMMIT
g 2022 Organized by 423 HOPSWORKS

https://sky.cs.berkeley.edu/

FEATURE STORE
SUMMIT

2022

What causes features (or data) to be stale?

1. Computational Bottlenecks

Problem: New data has not be processed to be reflected in feature values

2. Data Movement Bottlenecks

Problem: Data is slow and expensive to replicate

ralf: Optimizing Computation for Feature Maintenance

Feature Maintenance

-
News 1 p
Application | | raw data

Click Stream ()_|_> user_id
| click
event: { user_id: 84, I
click_id: 5329}
Query Stream (\
J |
T query: ("sporting events" , user_id) : -

1
prediction: [6, 3943, 1] :

model(embedding,
"sporting events")

Feature Store

N
"~

eature_table

user_id
embedding

N——

user_id

embedding

ralf: Optimizing Computation for Feature Maintenance

Computationally Expensive

Feature Maintenance Feat St
e e e e e e ———————— = eature siore
News 1 d 1 /_——\
Application \ | |evEeess : N—
Click Stream (L_,| user_id [
J : click 1 eature_table
event: { user_id: 84, I 1 :
click_id: 5329} T T LTSS R ST T user_id
embedding
------------------- ¥
Query Stream (h :' I A
J | |
» - 1
1 query: ("sporting events" , user_id) : " mode[(embeddmg, I user id
! "sporting events") | ! B
prediction: [6, 3943, 1] : : embedding

ralf: Optimizing Computation for Feature Maintenance

Computationally Expensive

Feature Maintenance
fremmccmccsccsccsccs————— - Feature Store
News 1 d 1 /_——\
Application \ | |evEeess : N—
Click Stream (L_,| user_id [
J : click 1 eature_table
event: { user_id: 84, I 1 :
click_id: 5329} T T LTSS R ST T user_id
. embedding
------------------- ¥
Query Stream () :' I A
1 1
1 query: ("sporting events" , user_id) : > mode[(embeddmg, : User id
! "sporting events") | ! B
prediction: [6, 3943, 1] : : embedding
___________________ J

Model Performance Degradation

Tradeoffs for Pre-computed Features

A
High Quality Identify right tradeoff point
for dependent models

4-? real-time

g —K

o 5 1. Resource cost for

[}

B " frequent feature updates

1]

Q daily

= ba‘°““¥ 2. Queried feature quality
Low Quality Y

il =

Compute Cost
Expensive Cheap

I
Opportunity for More Intelligent Scheduling

Many features keys in a feature

A table may never be queried.
High Quality
) Updating a feature that is never
'c_Ts # queried is a waste of compute
- real-time Queries
S P |
=
% Key
- Changes to features may
not affect model predictions

» (robust to staleness)

Compute Cost ;
Expensive Cheap Is staleness doesn’t affect the model,
there’s no need to update the feature

Low Qualit
Quality Y -

Scheduling Policy

We use the cumulative regret of a feature (since it was updated) as a measure

to prioritize updating feature value.

Regret

Feature Maintenance Feature Store

""""""""""" [

I Key Feature

Timestep

v

Serving

© KeyB

Cumulative
Regret

Error Feedback

Regret

Timestep

Result: Higher Accuracy, Same Cost

Lower prediction error some equivalent feature update budgets
across different workloads (anomaly detection, recommendation)

A Average Prediction Loss (Time-Series)
policy
More Error mmm Round Robin
mmm Regret Optimized
L
26
=
4
2
Less Error
0
v 1 2 3 4 6 12 24
Updates per Timestep
i -
Lower Cost Higher Cost

(From current paper in-review. Please email wooders@berkeley.edu if you're interested in seeing the submission!)

Result: Higher Accuracy, Same Cost

Lower prediction error some equivalent feature update budgets
across different workloads (anomaly detection, recommendation)

A Improvement in Cost/
More Error Accuracy Tradeoff
Less Error
v< -
Lower Cost Higher Cost

(From current paper in-review. Please email wooders@berkeley.edu if you’re interested in seeing the submission!)

Skyplane: Fast, Cheap Cloud Data Replication

For many applications, data movement is the bottleneck (not compute) -
e.g. for feature publishing and serving.

aws

—1 Model 1 aWS
e S
Feature

—1 Model 2 >
| ot

Models may need to access data Data may need to be delivered to applications on

located on different clouds and regions. different cloud regions or providers.

— < Model

FEATURE STORE
v SUMMIT
2022

Direct transfer is slow
Moving a 70GB dataset between regions (single cloud) or providers (multi-cloud)

1. Slow transfers = stale data

[ubuntu@ip-172-31-82-174: ~

(base) ubuntu@ip-172-31-82-174:~$ aws s3 cp --recursive s3://skyplane-us-east-1/ s3://exps-paras-skylark-us-east-2/_
copy: s3://skyplane-us-east-1/00300.bin to s3://exps-paras-skylark-us-east-2/_/00300.bin

copy: s3://skyplane-us-east-1/00303.bin to s3://exps-paras-skylark-us-east-2/_/00303.bin

copy: s3://skyplane-us-east-1/00302.bin to s3://exps-paras-skylark-us-east-2/_/00302.bin

copy: s3://skyplane-us-east-1/00301.bin to /exps-paras-skylark-us-east-2/_/00301.bin

copy: s3://skyplane-us-east-1/00305.bin to /exps-paras-skylark-us-east-2/_/00305.bin

copy: s3://skyplane-us-east-1/00304.bin to s3://exps-paras-skylark-us-east-2/_/00304.bin

Iompleted 48.0 MiB/~2.7 GiB (21.4 MiB/s) with ~338 file(s) remaining (calculating...)

2. High egress fees
Cost to move 70GB dataset o

— AWS’s Egregious Egress
—

© warowrinco @ winmo

Data Transfer OUT From Amazon EC2 To Internet

Running 34 instances N

Next 40 TB / Month $0.085 per GB
(m5.xlarge) Next 10078 / Month $007 per 8
g Greater than 150 TB / Month $0.05 per GB

When web hosting services first emerged in the mid-1990s, you paid for everything
on a separate moter: bandwidth, storage. CPU, and memory. Over time, customers

Why do slow transfers matter?
Slow transfers = worse accuracy

ETA
prediction

(A niio
\

=P Preprocessing =% Feature_ —»| Model training —»{ Deployment
\ # Computation

I
What is Skyplane?

Problem: Managing data across regions and across clouds is slow and expensive

Skyplane is a system for fast, low-cost transfers between object stores.

skyplane cp {s3,gs,az}://... {s3,g9s,az}://...

Up to 113x faster
How does it work? within single cloud

1. Faster networking:

Up to 267x faster
Control network route (overlay network) between clouds

Striping over parallel VMs

Up to 3.8x cheaper
2. Lower egress cost:

R

Compression + bandwidth tiering

Open source project!

S pip install skyplane

skyplane.org

Direct internet path between clouds are often slow

Direct internet path between clouds are often slow

O 2.7 gbps :

AWS us-east-1 GCP us-west1

Overlay routing allows circumventing slow links

4.7 gbps 4.4 gbps

O O -O

AWS us-east-1 AWS us-west-2 GCP us-west1

Striping transfers large files across parallel VMs

@, @, -O
O O -O
AWS us-east-1 AWS us-west-2 -GCP us-westi

)4

O -

2.7 gbps => 17.6 gbps

Low cost: Compression to reduce egress cost

Q-O O ’O

BO——O0——0

pO—O0—20

uoisssaidw
uoIsSsaidwoo9(]

BO——0O0——O

AWS us-east-1 AWS us-west-2 GCP us-west1

All together: transfer datasets in minutes with Skyplane

rsync- 3hr 31m (164x slower than Skyplane)

AWS DataSync- 2hr 25m (113x slower than Skyplane)

Skyplane §1m 17s

Os 2,000s 4,000s 6,000s 8,000s 10,000s 12,000s
Transfer time (seconds)
. 22
Workload: 1x 64GB file
Source: AWS ap-southeast-2

Destination: AWS eu-west-3
of VMs: 8

2.5 hours => 1.5 mins

Full benchmarks online at https://skyplane.org/en/latest/benchmark.html

https://skyplane.org/en/latest/benchmark.html

Low cost: up to 3.8x cheaper for compressible data

$4.47 (3.8x more expensive than Skyplane)

AWS DataSync -

$0.00 $1.00 $2.00 $3.00 $4.00 $5.00 $6.00 $7.00
Transfer cost ($)

$7.27 (6.2x more expensive than Skyplane)

23

Workload: 228GB Wikipedia dump
Source: AWS us-east-1 54.47 => $1 17
Destination: AWS us-west-2

of VMs: 8

All techniques explained in our NSDI 2023 paper

Overlay routing

Longer indirect paths are worthwhile for slow links

of VMs per region

Access throughput beyond NIC, AWS and GCP throttle egress

of parallel TCP connections

Unlike internet, fairness is a provider-level concern due to egress fees

Network tier selection

Hot potato routing up to 40% cheaper than cold potato

Skyplane: Network Overlays for Navigating the
Cost—Performance Tradeoff for Inter-Cloud Bulk Transfers

Paras Jain, Sam Kumar, Sarah Wooders, Shishir Patil, Joseph Gonzalez, and Ton Stoica
University of California, Berkeley

Abstract

Cloud applications are increasingly distributing data across
multiple regions and cloud providers due to privacy regu-
lations, availability of specialized hardware, and to prevent
vendor lock-in. Unfortunately, wide-arca bulk data transfers
are often slow, bottlenecking applications. We demonstrate
that it is possible to significantly improve inter-cloud bulk
transfer throughput by adapting network overlays to the cloud
setting—that is, by routing data through indirect paths at the
application layer. However, dircctly applying network over-
lays in this setting results in unacceptable increases in cloud
egress prices. We present Skyplane, a system for bulk data
transfer between cloud object stores that uses network over-
lays to optimally navigate the trade-off between price and
performance. Skyplane’s planner uses mixed-integer lincar
programming to determine the optimal overlay path and re-
source allocation for data transfer, subject to user-provided
constraints on price or performance. Skyplane’s data plane
saturates the available bandwidth found by the planner with
parallel reads/writes and integrates well with object stores,
aligning with the stores” internal layouts. Together, these tech-
niques allow Skyplane to significantly improve object transfer
throughput at very low cost overheads.

1 Introduction

Many applications replicate data across multiple regions and
datacenters, requiring fast bulk data transfers across the wide
area. These applications include transferring data from one
datacenter to others for data analysis (e.g. ETL [6], Geo-
Distributed Analytics [38]), and transferring the results of
analysis to other datacenters for production (c.g. moving
search indices [25]). There has been extensive prior work
in optimizing the transfer time of bulk data transfers between
datacenters, with application requirements on transfer time
often modeled as deadlines [25,26,28,46]. All mainstream
cloud providers offer services for bulk transfers (c.g. AWS”
DataSyne, Azure AzCopy, and GCP Cloud Transfer Service).

Increasingly, applications are built not only on multiple
regions within a cloud provider (multi-region), but also across
multiple cloud providers (multi-cloud), due to variations in
pricing, features, and availability of cloud services. In a recent
survey [19], more than 86% of 727 respondents had adopted a
multi-cloud strategy across diverse workloads. Thus, support
for fast, eross-cloud bulk transfers is increasingly important

Bulk transfer performance is governed by two factors: trans-
fer time (latency) and cost. Thus, we ask: How can we im-
prove the transfer of data objects to support latency-sensitive
workloads, while minimizing the additional cost of achieving
Jfaster data transfers? We study this question in the context of
designing and implementing Skyplane, an inter-cloud object
transfer system which we plan to open-source.

A seemingly natural approach is to optimize the routing
protocols used internally by cloud providers to support higher-
throughput inter-cloud data transfers. Unfortunately, this is
not feasible for two reasons. (1) Re-architecting the IP-layer
routing protocol to optimize for high-throughput bulk transfer
could be suboptimal for other applications that are sensitive to
network latency. (2) Cloud providers lack a strong incentive to
optimize efficient data transfer to other clouds. Indeed, AWS
DataSync [4], AzCopy [15], GCP Data Transfer [23], AWS
Snowball [44] and Azure Data Box Disk [8], all support data
transfer info, but not out of, their respective clouds. However,
the network path between clouds is ultimately split among
multiple cloud providers, and the best results can only be
achieved with the source cloud’s cooperation as well

Skyplane’s key observation is that we can instead iden-
tify overlay paths—paths that send data via intermediate
cloud regions—that are faster than the direct paths. For
example, consider transferring data from Azure’s Central
Canada region to GCP's asia-northeast1. Using direct
TCP connections would yield 6.2 Gbps. Instead, Skyplane
can first transfer data from Central Canada to Azure’s US
West 2 at 25.9 Gbps, and then transfer it from US test
210 asia-northeast1 at 12.4 Gbps, for a 2.0x speedup
(Fig. 1). Crucially, this can be implemented on top of the
cloud providers’ services, without their explicit buy-in.

24

Thank you!

Contact: wooders@berkeley.edu

ralf: https://qithub.com/feature-store/ralf

Skyplane:

S pip install skyplane
$ skyplane 1init

$ skyplane cp -r s3://.. gcs://..

skyplane.org

mailto:wooders@berkeley.edu
https://github.com/feature-store/ralf

