
Chronon
Airbnb’s Feature Engineering Framework

Nikhil Simha
nikhil.simha@airbnb.com

Announcements

 You are in the right place!

Renamed to “Chronon” from zipline

Private Beta - user / contributor

 If you are interested drop a mail to

 nikhil.simha@airbnb.com or jack.song@airbnb.com

mailto:nikhil.simha@airbnb.com
mailto:jack.song@airbnb.com

Cristian
Figueroa

Pengyu
Hou

Varant
Zanoyan

Nikhil
Simha

Vamsee
Yarlagadda

Atul
Kale

Jack
Song

Haichun
Chen

Haozhen
Ding

Sophie
Wang

Agenda

What’s a feature platform?

How to use it?

Machine learning flywheel

Training
Data

Model

Inference

Raw Data

Online
Features

Offline
Features

LabelsFe
at

ur
e

ba
ck

fill
s

Label extraction

Feature Refresh

Feature Serving

Feature Logging

Label Join

Goals - management

Unified API

Feature Lifecycle

Authoring & Release

Feature observability

Training data quality

Realtime feature drift

Online-offline consistency

Goals - API

Powerful & Composable Building blocks

Source types

Entities Events & Cumulative Events

GroupBy - Aggregation engine

Join - PITC joins

Staging Query

Arbitrary ETL to prepare data

Goals - computation

Log & Wait vs Backfill
 Large training data ranges -> lot of waiting

New features need to be derived from existing raw data
Realtime Features
 Hardest systems problem in ML
 Stream processing + Batch processing + Storage + Fetching
 Backfills

Non-Goals

No Model Training or Inference

Not for report generation use-cases b

Spark vs Clickhouse/Druid

Static usage is fine

Requirements

Airflow
Scheduler
or B-Y-O

Kafka
Event Store

Hive (optional)
Batch-Catalog

Spark
Compute Engine

?
KV Store

Bring-Your-Own

Offline - problem statement (item recommendation)

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table

code

https://gist.github.com/nikhilsimha/13cf46b93116bc3b0b08b4adc1483bd1

Offline - problem statement

Online - problem statement

View

Rating

1 1 1

3

Time

1

2 4

Label L

Prediction P1 P2

3

3

2

2.5

L L

Training data set

Examples – E-Commerce platform

Count of Item views of a user in the last 5 hours – from a item view stream
Average rating of an item in the last 90 days – from a ratings table

Count / Average – Aggregation operations
Item Views/Rating – Aggregation Inputs
User/item – Aggregation Key
Last X days – Aggregation Window
Ratings Table/ Item View Stream – Data Source
Accuracy - Real-time or Daily

Data Sources

Service Fleet

Production
Database

DB
Snapshot

Event log

Change
Capture
Stream

Event
Stream

 Change
capture log

Message Bus

Data Lake

Live

Derived
Data

Media

Message Bus / Kafka Offline data store / hive

Applications that produce data

Service

online table

snapshotTable

table

mutationT
opic

topic

mutationTable

dimension
tables

Message Bus /Kafka Offline data store / hive

Applications that produce data

fact tables

Sources - Events

• Each partition contains data/events that occur in [ds, ds + 1]

• fct sources/dim sources

• PITC -> hive table

• materialized view -> topic

Events - item views

…

item user timestamp date

a user_1 10:30 am 9/20

b user_1 1:11 pm 9/20

a user_2 3:45 pm 9/20

item user timestamp date

c user_3 9:15 am 9/21

a user_2 5:31 pm 9/21

`item_views` - date Partitioned hive table

Sources - Entities

• Each partition contains data for all entities - as of ds (date_string)
• DB Table snapshots

• Sqoop

• Mutations! (CDC)
• Mutations Table & a Mutation Topic

• Debezium + Kafka

• PITC -> snapshot table + mutation table
• materialized views -> snapshot table + mutation topic

Entities - item reviews
item user review updated_at ds

a user_1 good 09/10 09:03 9/20

b user_2 bad 09/20 17:15 9/20

d user_3 okay 09/05 13:21 9/20

`item_reviews` - snapshotTable
(ds partitioned)

item user review updated_at ds

a user_1 good 09/10 09:03 9/21

b user_2 okay 09/21 09:03 9/21

c user_1 bad 09/21 15:31 9/21

is_before item user review updated_at mutation_ts date

true b user_2 bad 09/20 17:15 09/21 09:03 9/21

false b user_2 okay 09/21 09:03 09/21 09:03 9/21

true d user_3 okay 09/05 13:21 09/21 15:55 9/21

false c user_1 baad 09/21 15:31 09/21 15:31 9/21

`item_reviews_mutations` -
mutationsTable (ds partitioned)

Sources - Cumulative

Insert only tables

Each new partition is a superset of any old partition

Latest partition is enough to backfill features at arbitrary points in time

No deletes/updates - mutations table not needed

Events in db tables

Cumulative Events

c user_3 9/21 9:15 am 9/21

a user_2 9/21 4:21 pm 9/21

`item_views` - date Partitioned hive table

item user timestamp date

a user_1 1/1 10:30 am 9/20

b user_1 3/21 1:11 pm 9/20

a user_2 9/20 3:45 pm 9/20

item user timestamp date

a user_1 1/1 10:30 am 9/20

b user_1 3/21 1:11 pm 9/20

a user_2 9/20 3:45 pm 9/20

Sources - Why?

Error-prone date wrangling

fct/event scan = partition_of(min_query_ts - max window)

cumulative scan = latest_partition

entity scan

snapshot_table - partition_of(min_query_ts) - 1

mutation_table - partition_of(min_query_ts)

Optimization hints!

Code Examples

Examples
Count of Item views of a user in the last 5 hours – from a item view stream

Examples
Average rating of an item in the last 90 days – from a ratings table

Examples - Join
Putting it all together

API

Spark SQL Expression language
Time is first class

Source Types
Windows
PITC joins

Aggregations
Commutative
Bucketing
Auto Flattening

Composability of python

Architecture
Very High Level

 Online Feature Serving

KV
Store

ModelClient
Application

Server

Chronon Conf

Feature
Backfill

Batch

Streaming

Data Quality

Model
Training

run.py
(chronon-ai pip package)

User API
(compile.py)

System API

 Online Feature Serving

KV
Store

Client

Chronon Conf

Feature
Backfill

Batch
refresh

Streaming
refresh

Feature
Quality

Execution
(run.py)

Airflow Spark

GroupBy

Concepts - GroupBy

• Group of Features derived from the same/similar sources of data
• Source

• From + Where + Select - powered by spark sql
• Keys
• Aggregations

• Input - auto-flattened
• Operation
• Window - hourly or daily
• Bucketing - ratings by category - Map [category -> rating]

• Accuracy

Concepts - Aggregations

SUM, COUNT, AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K,

LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM…, APPROX_PERCENTILES

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates

Windows

Windows – Sliding

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Query
2:27

Query tail
 1:27

Sliding
Window

e3 + e4 + e5

• Freshness

• Memory intensive

Windows – Hopping

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Hopping
Window

e3 + e4 + e5

Query
2:27

Query tail
 1:27

Sliding
Window

e4 + e5 + e6

Windows – Hopping

• Staleness

• As stale as the hop size

• Memory Efficient

• One partial per hop

Query Time

S
ta

le
ne

ss

Windows – Sawtooth

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Hopping
Window

e3 + e4 + e5

Query
2:27

Query tail
 1:27

Sliding
Window

e4 + e5 + e6

Sawtooth
Window

e3 + e4 + e5 + e6

Windows – Sawtooth

• Freshness

• Writes are taken into account immediately

• Memory

• Partial aggregates per hop

Windows – Sawtooth

• Catch

• sum/count vs others

• Consistency

Query Time

Hop
Size

Hop
SizeWindow

SizeE
ffe

ct
iv

e
W

in
do

w

Join

Concepts - Join

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table

Concepts - Join

Concepts - Join

• Join multiple GroupBy-s (feature groups) together
• Decide to show a particular user a particular item – likelihood to buy

• X User Features groups
• Y Item Features
• Z (User, Item) Features– past interactions

• Gather both Online & Offline
• Left & rights

• labelled data + timestamped keys & feature derivations

Workflow

User workflow

explore.py

Lineage search

Author compile.py

Code Validation

Release

run.py

Pipeline gen

Testing

Explore

• explore.py: Keyword lineage search
• raw data > feature group > feature set > model

• compile.py:
• validation & change management

• run.py:
• data pipeline generation & testing

Compile

• Python is powerful

• Change Management

• Hand-off to scala engine

Run.py - testing

• Offline flows
• Join – training data generation
• StagingQuery – arbitrary ETL
• GroupBy – midnight accuracy – metrics style

• Online flows
• Lambda – batch + streaming
• Fetching Join & GroupBy
• Uploading metadata

Run.py - scheduling

• Airflow based - but flexible

• Joins: DAG each

• GroupBy: DAG per team
• Lambda Serving
• Streaming task is “heartbeat-or-restart”

• StagingQuery: DAG per team

Repo structure

• staging_queries - free form etl

• group_bys – aggregation primitive

• joins – gathering multiple groupBy’s

•

Folder/module per “team”
• teams.json

• Compiled artifact folder
Scripts - spark batch & streaming jobs + fetch online jar

Repo structure - one time setup

• Scripts
• spark batch job submission

• spark streaming jobs

• fetch online api implementation jar

Workflows – offline

• Idempotency / Auto backfill
• Job always tries to fill in all of its unfilled range

• Airflow convention is task instance per date
• Re-use compute & Natural ML user-flow

• Staging Queries
• Free form ETL

• Spark SQL Based

• Join Backfills – already covered

• GroupBy Standalone Backfills

Workflows – Online

• Read optimized materialized views
• Low latency ~10ms, high QPS

• Based on
• Kafka
• Spark Streaming
• General KV Store API

Online Integration API

• One time integration

• KV Store
• Point Read + Scan from timestamp
• Single Write + Bulk Write

• Streaming
• Decode Bytes into a Row in Chronon Schema
• Intersection of Avro & Parquet

Airflow Scheduling
• We provide airflow integration template

https://github.com/airbnb/chronon/blob/master/online/src/main/scala/ai/chronon/online/Api.scala

Perf Stats

• Serving
• Read: latency, qps, payload sizes - breakdown by groupBy
• Streaming Write: Freshness, qps, payload size
• Bulk write: Compute time, data sizes etc.

• Training data generation
• Compute time – breakdowns
• Row count

Data Stats

• Online offline consistency
• Numerical: SMAPE
• Categorical: Inequality percentage
• Lists: Edit Distance

• Feature Quality
• Coverage
• Cardinality
• Distribution
• Correlation

Cases

• Online / Offline
• Backfilled / Logged
• PITC / Midnight accurate
• Events / Entities / Cumulative
• Windowed / Lifetime Aggregations
• Reversible / Non Reversible
• Single Column, Single Aggregation, Single window

Problem statement - Events PITC

Naive approach

Complexity?

Naive approach

Complexity?

N^2

Can we do better?
• sort + cursors

• Complexity? n*log(n)

• Distribute friendly?

• Use of subtraction - doesn’t work

for max, min etc.

• Even better?

Some important observations

• Windows overlap a lot for a given key

• Label data is usually much smaller than raw data

• Fraction of keys that engage on the platform is small

• The fraction with labels could be even smaller.

Approaches

• Windows overlap a lot for a given key
• Break windows into reusable tiles.

• Label data is usually much smaller than raw data
• Use labels/queries to determine the tiles effectively

• Fraction of keys that engage on the platform is small
• Use a compact approximate structure to filter out “most” of unwanted keys
• Bloom filter - false positives are okay, true negatives are not.

12 13

Tiling windows

0 1

Query timestamps

0-1

2 3

2-3

0-3

4 5

4-5

6 7

6-7

4-7

0-7

8 9

8-9

10 11

10-11

8-11

12-13

14 15

14-15

12-15

8-15

0-15

Incoming Event (ts, payload) Event span

Window tiling

• Hopping tail is common across all queries that fall into the head!

• The idea is to compute tails and heads separately.

Window tiling

• What if queries don’t fit in memory?

• Tiling can’t be dynamic(query dependent)

• Hops?

• Let’s examine window semantics

Window tiling

• We need to stitch together
• Tail value
• Raw events in the head
• Queries in the head

Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)

Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]

Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)

Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]

Window tiling - final

• Trade-off

• Moving too much data

• Evenly distributing work across machines

Resources

• Pig’s perf page
• VLDB

• anything that has “groupjoin” on it.
• sketches

• Yahoo datasketches library
• cardinality estimation - CPC sketch
• frequent items

• Bloom filters

https://pig.apache.org/docs/latest/perf.html#specialized-joins

• MPP compute - trino, clickhouse etc., traditional OLAP
• Don’t scale

• RDD lacks “stream one side of the join into the other WHILE aggregating”
• OLAP / MPP is actually streaming
• Not new / flink / beam / tf

Opinions

Streaming

Micro
Batch MPP

Uni-directional/DAG Iterative

Graph ML

Interactive
Analytics BI Metrics Features

Page
Rank

Social
Hash … Model Parallel

All ReduceSQL Monadic/
DataFrame/RDD

Data
Parallel

Appendix - Tree Tiling

Streaming Data
Kafka/Kinesis

Batch Data
Hive

Service Data
Thrift/GRPC

Data Integration

Unified Compute

D
at

a
Q

u
al

it
y

BI ML
Rule

Engines
Experimentation

(MAB /)

Chronon
● Unified view of data from three contexts

○ Batch / Hive / Service
○ Only possible if warehouse has conventions
○ Data integration is one of the hardest and most

underrated problems.
● Unified compute

○ Scanning, Projections, Filtering, Join,
Aggregations

○ Aggregation is where big data becomes small /
meaningful data.

○ Time is global ordering. All existing OLAP systems
don’t model time. Warehouses have a strong time
convention.

○ Realtime compute is essential for ML. RT with
regression is better than transformers.

○ Without modeling time it is very hard to make
computation tractable - specially in RT case.

● Quality
○ Input data, output data, realtime actioning

■ converate, correlation, distributions
○ Compute in real-time & batch

Data Capture

