Chronon Airbnb's Feature Engineering Framework

Nikhil Simha nikhil.simha@airbnb.com

Announcements

You are in the right place!

Renamed to "Chronon" from zipline

Private Beta - user / contributor

If you are interested drop a mail to

nikhil.simha@airbnb.com or jack.song@airbnb.com

Haozhen Ding

Pengyu Hou

Vamsee Yarlagadda

Varant

Zanoyan

Sophie Wang

Atul Kale

Jack Song

Haichun Chen

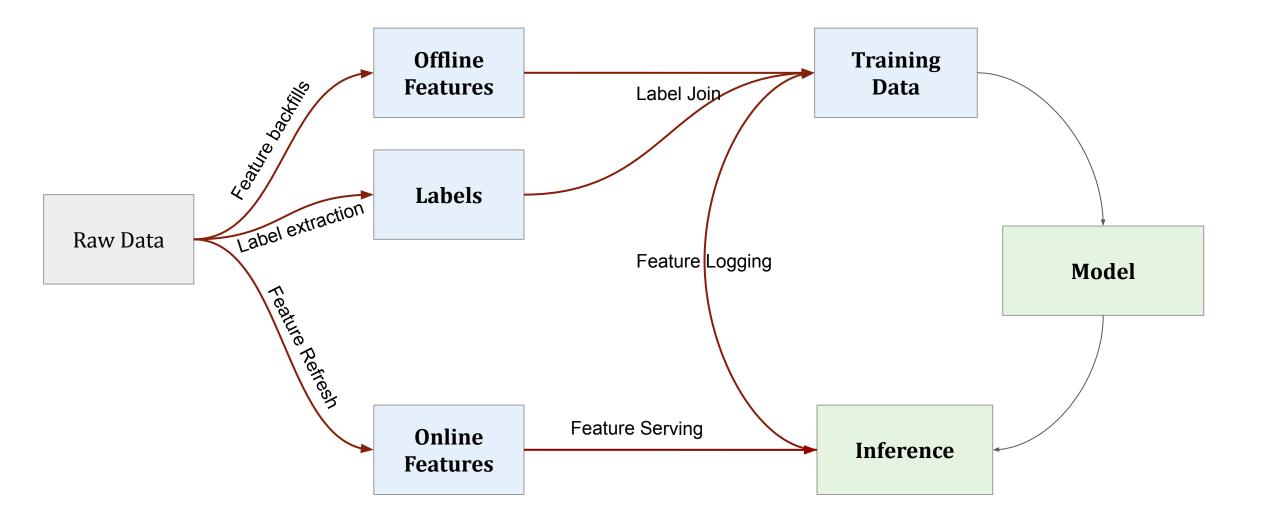
Nikhil Simha

Agenda

What's a feature platform?

How to use it?

Machine learning flywheel



Goals - management

Unified API

Feature Lifecycle

Authoring & Release

Feature observability

Training data quality

Realtime feature drift

Online-offline consistency

Goals - API

Powerful & Composable Building blocks

Source types

Entities Events & Cumulative Events GroupBy - Aggregation engine Join - PITC joins Staging Query

Arbitrary ETL to prepare data

Goals - computation

Log & Wait vs Backfill

Large training data ranges -> lot of waiting

New features need to be derived from existing raw data

Realtime Features

Hardest systems problem in ML

Stream processing + Batch processing + Storage + Fetching

Backfills

Non-Goals

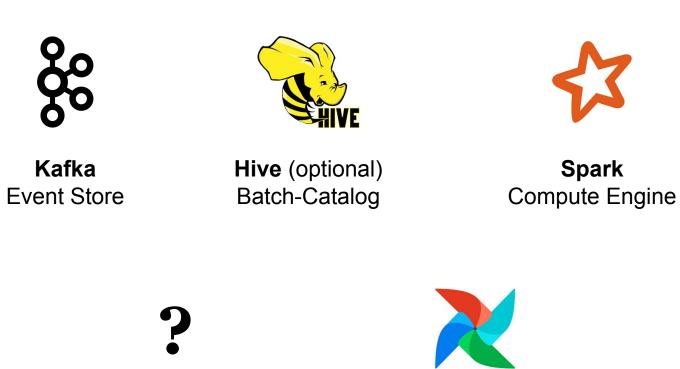
No Model Training or Inference

Not for report generation use-cases b

Spark vs Clickhouse/Druid

Static usage is fine

Requirements



KV Store Bring-Your-Own

Airflow Scheduler or B-Y-O

Offline - problem statement (item recommendation)

user_id	timestamp
alice	2021-09-30 5:24
bob	2021-10-15 9:18
carl	2021-11-21 7:44

view_count_5h

• From view stream

avg_rating_90d

• From ratings db table

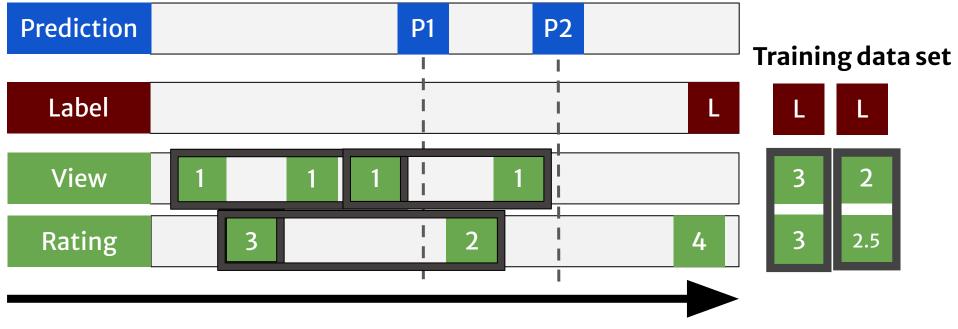
<u>code</u>

Offline - problem statement

user_id	timestamp	views_count_5h	avg_rating_90d
alice	2021-09-30 5:24	10	3.7
bob	2021-10-15 9:18	7	4.5
carl	2021-11-21 7:44	35	2.1

Online - problem statement

user_id	timestamp	views_count_5h	avg_rating_90d
alice	2021-09-30 5:24	10	3.7
bob	2021-10-15 9:18	7	4.5
carl	2021-11-21 7:44	35	2.1



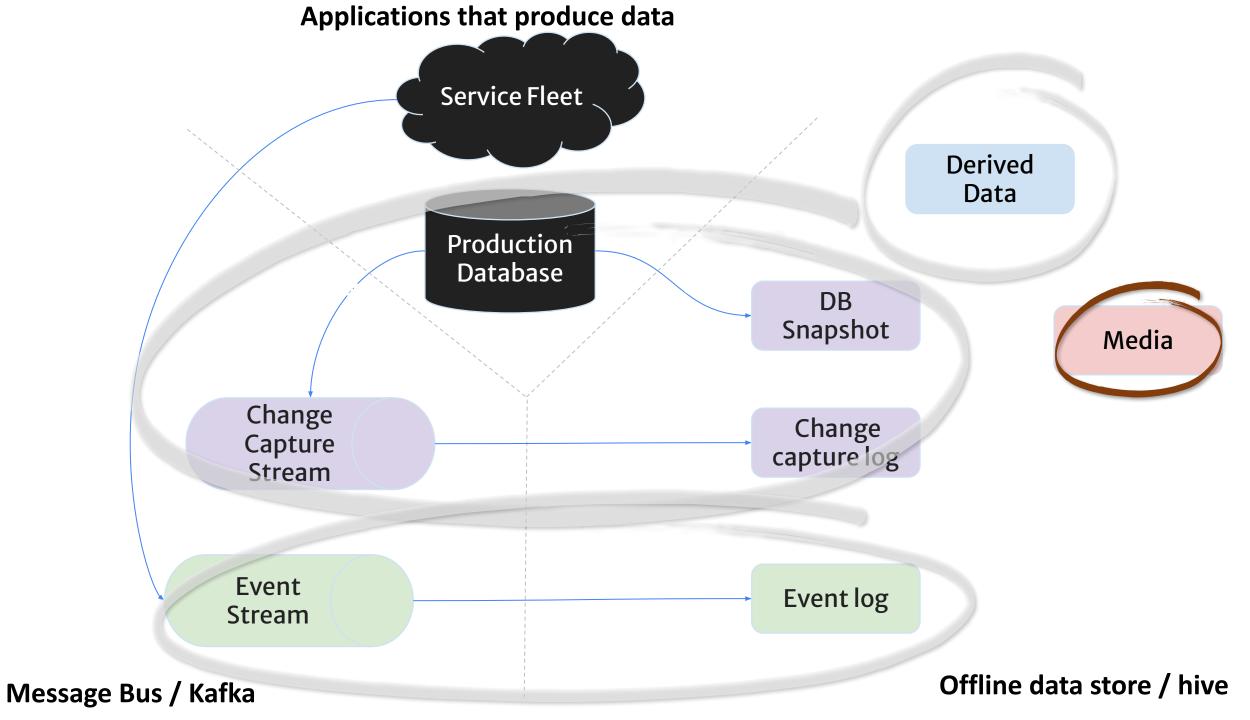
Time

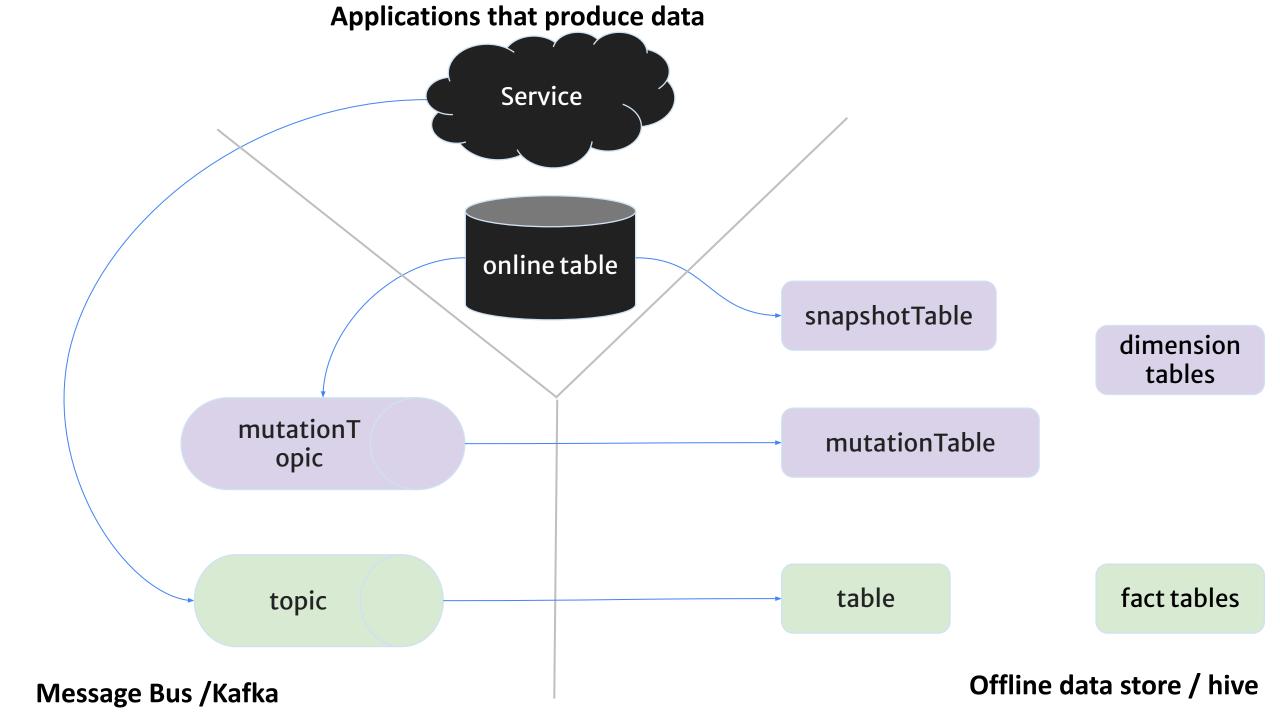
Examples – E-Commerce platform

<u>Count of Item views of a user in the last 5 hours</u> – from a <u>item view stream</u> <u>Average rating of an item in the last 90 days</u> – from a <u>ratings table</u>

Count / Average – Aggregation operations Item Views/Rating – Aggregation Inputs User/item – Aggregation Key Last X days – Aggregation Window Ratings Table/ Item View Stream – Data Source Accuracy - Real-time or Daily

Data Sources





Sources - Events

- Each partition contains data/events that occur in [ds, ds + 1]
- fct sources/dim sources
- PITC -> hive table
- materialized view -> topic

Events - item views

item	user	timestamp	date
а	user_1	10:30 am	9/20
b	user_1	1:11 pm	9/20
а	user_2	3:45 pm	9/20

item	user	timestamp	date
С	user_3	9:15 am	9/21
а	user_2	5:31 pm	9/21

. . .

`item_views` - date Partitioned hive table

Sources - Entities

- Each partition contains data for all entities as of ds (date_string)
- DB Table snapshots
 - Sqoop
- Mutations! (CDC)
 - Mutations Table & a Mutation Topic
 - Debezium + Kafka
- PITC -> snapshot table + mutation table
- materialized views -> snapshot table + mutation topic

Entities - item reviews

item	user	review	updated_at	ds
а	user_1	good	09/10 09:03	9/20
b	user_2	bad	09/20 17:15	9/20
d	user_3	okay	09/05 13:21	9/20

item	user	review	updated_at	ds
а	user_1	good	09/10 09:03	9/21
b	user_2	okay	09/21 09:03	9/21
С	user_1	bad	09/21 15:31	9/21

is_before item review updated at mutation ts date user 09/20 17:15 09/21 09:03 9/21 true b user 2 bad 09/21 09:03 09/21 09:03 9/21 false b user_2 okay 09/05 13:21 09/21 15:55 9/21 true d user 3 okay false user 1 baad 09/21 15:31 09/21 15:31 9/21 С

`item_reviews_mutations` mutationsTable (ds partitioned)

`item_reviews` - snapshotTable
 (ds partitioned)

Sources - Cumulative

Insert only tables

Each new partition is a superset of any old partition

Latest partition is enough to backfill features at arbitrary points in time

No deletes/updates - mutations table not needed

Events in db tables

Cumulative Events

item	user	timestamp	date
а	user_1	1/1 10:30 am	9/20
b	user_1	3/21 1:11 pm	9/20
а	user_2	9/20 3:45 pm	9/20

item	user	timestamp	date
а	user_1	1/1 10:30 am	9/20
b	user_1	3/21 1:11 pm	9/20
а	user_2	9/20 3:45 pm	9/20
С	user_3	9/21 9:15 am	9/21
а	user_2	9/21 4:21 pm	9/21

`item_views` - date Partitioned hive table

Sources - Why?

Error-prone date wrangling

```
fct/event scan = partition_of(min_query_ts - max window)
cumulative scan = latest_partition
entity scan
snapshot_table - partition_of(min_query_ts) - 1
mutation_table - partition_of(min_query_ts)
```

Optimization hints!

Code Examples

Examples

Count of Item views of a user in the last 5 hours - from a item view stream

```
view_features = GroupBy(
      sources=[
          EventSource(
              table="user_activity.user_views_table",
              topic="user_views_stream",
              query=query.Query(
                  selects={
                      "view": "if(context['activity_type'] = 'item_view', 1 , 0)",
                  },
                  wheres=["user != null"]))
      1,
      keys=["user", "item"],
      aggregations=[
          Aggregation(
            operation=Operation.COUNT,
            windows=[Window(length=5, timeUnit=TimeUnit.HOURS)]),
```

Examples

Average rating of an item in the last 90 days - from a ratings table

```
ratings_features = GroupBy(
      sources=[
          EntitySource(
              snapshotTable="item_info.ratings_snapshots_table",
              mutationsTable="item_info.ratings_mutations_table",
              mutationsTopic="ratings_mutations_topic",
              query=query.Query(
                  selects={
                      "rating": "CAST(rating as DOUBLE)",
                  }))
      Ι,
      keys=["item"],
      aggregations=[Aggregation(
        operation=Operation.AVERAGE,
        windows=[Window(length=90, timeUnit=TimeUnit.DAYS)]),
```

Examples - Join

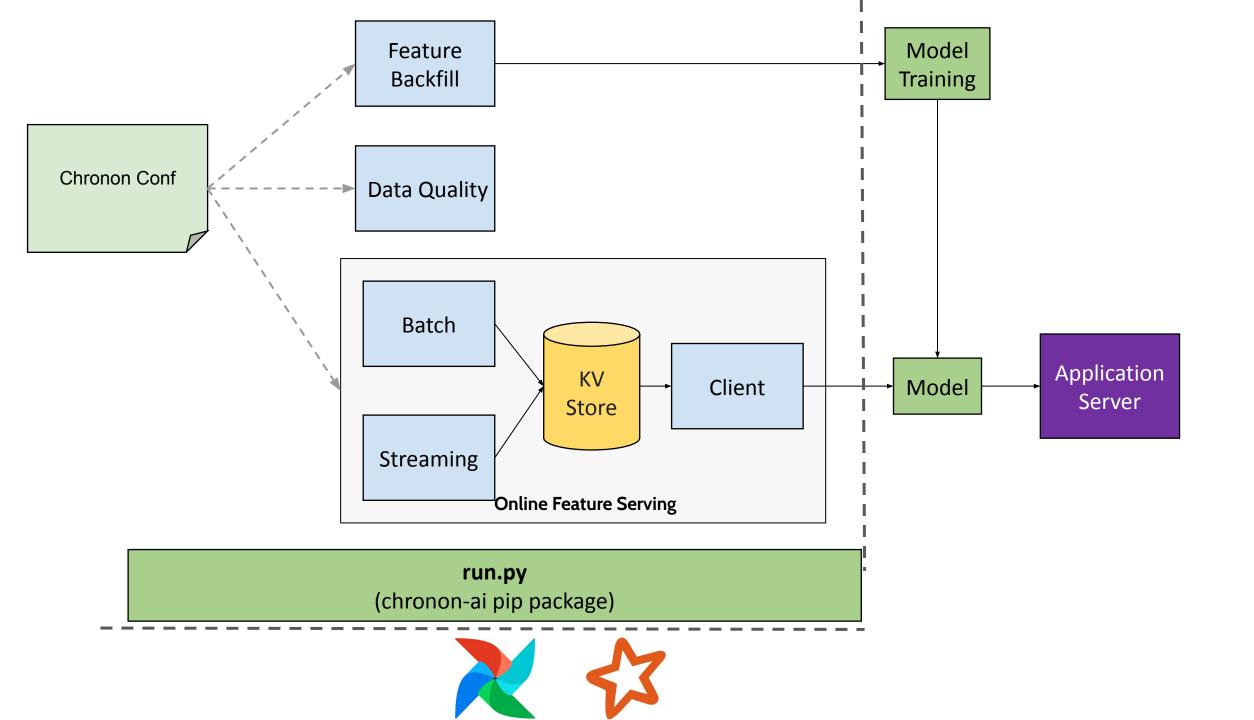
Putting it all together

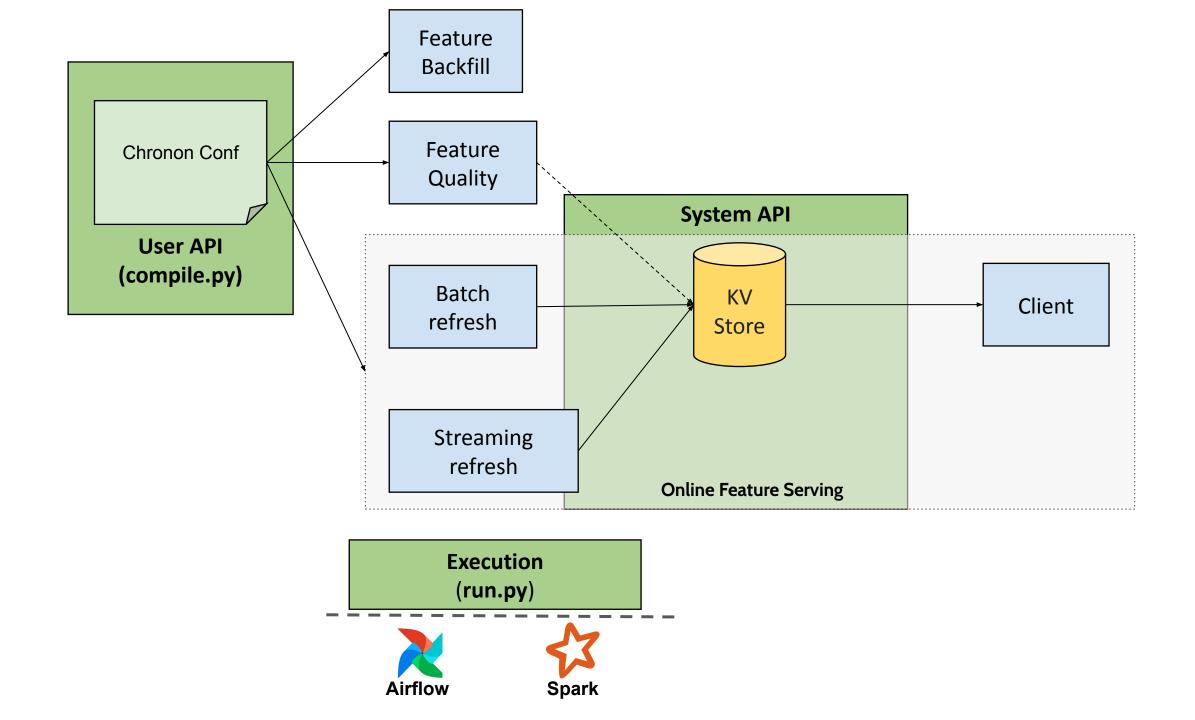
```
item_rec_features = Join(
    left=EventSource(
        table="user_activity.view_purchases",
        query=query.Query(
            start_partition='2021-06-30'
    / ,
    # keys are automatically mapped from left to right_parts
    right_parts=[
        JoinPart(groupBy=view_features),
        JoinPart(groupBy=ratings_features)
```

Spark SQL Expression language Time is first class Source Types Windows PITC joins Aggregations Commutative Bucketing Auto Flattening Composability of python

Architecture

Very High Level





GroupBy

Concepts - GroupBy

- Group of Features derived from the same/similar sources of data
 - Source
 - From + Where + Select powered by spark sql
 - Keys
 - Aggregations
 - Input auto-flattened
 - Operation
 - Window hourly or daily
 - Bucketing ratings by category Map [category -> rating]
 - Accuracy

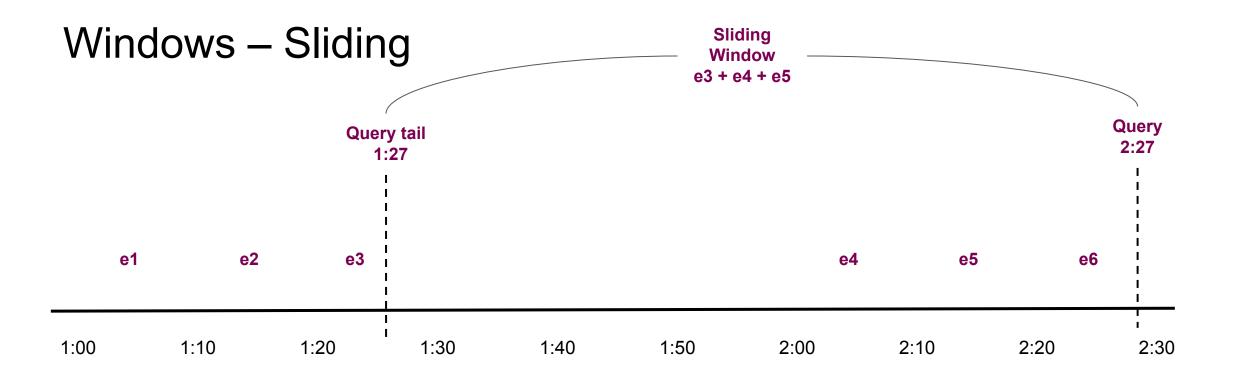
Concepts - Aggregations

SUM, COUNT, AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K, LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM..., APPROX_PERCENTILES

Commutative and associative - order independent & mergeable

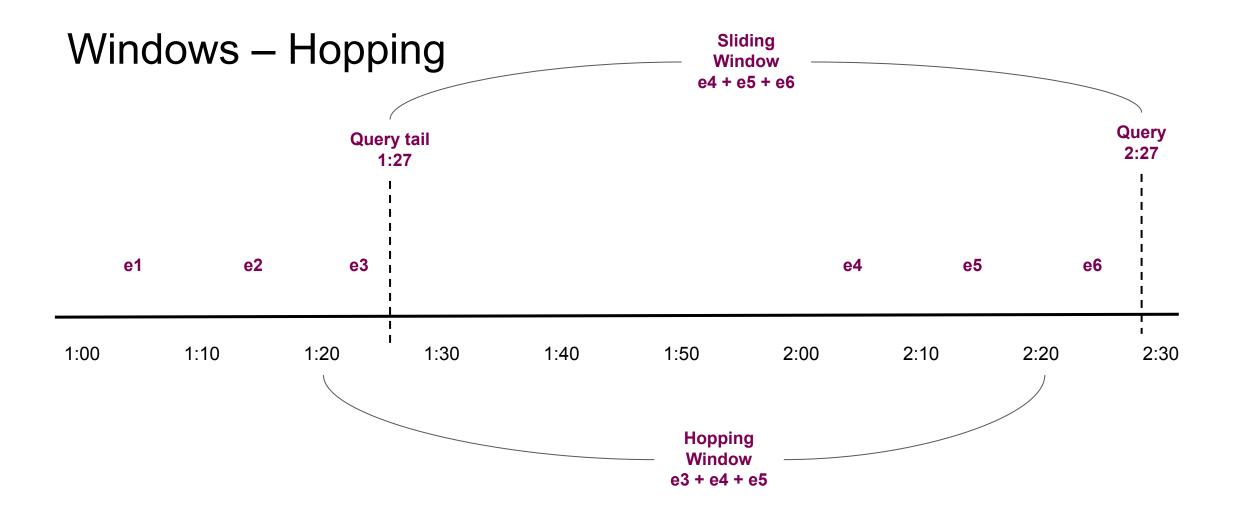
Sometimes reversible - CDC updates

Windows



Freshness

Memory intensive

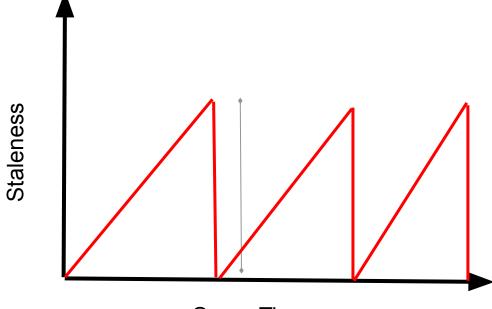


Windows – Hopping

Staleness

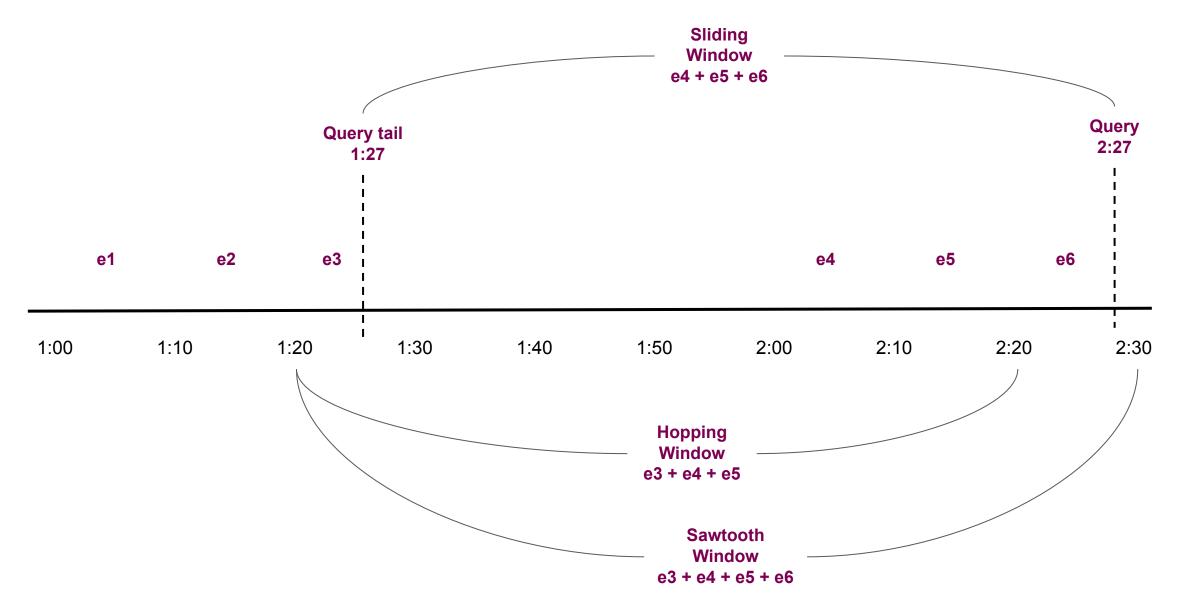
- As stale as the hop size
- Memory Efficient

• One partial per hop



Query Time

Windows – Sawtooth



Windows – Sawtooth

Freshness

• Writes are taken into account immediately

Memory

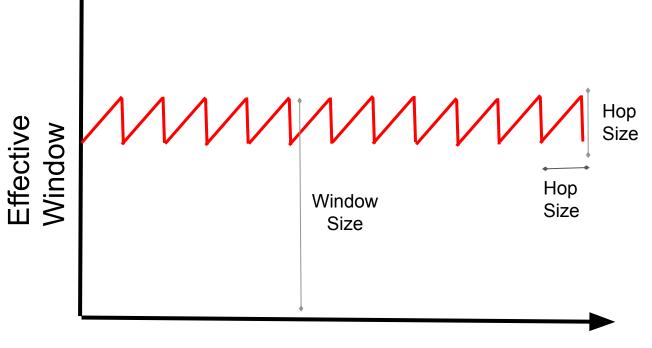
Partial aggregates per hop

Windows – Sawtooth

Catch

sum/count vs others

Consistency



Query Time

Join

Concepts - Join

user_id	timestamp		
alice	2021-09-30 5:24		
bob	2021-10-15 9:18		
carl	2021-11-21 7:44		

view_count_5h

From view stream

avg_rating_90d

• From ratings db table

Concepts - Join

user_id	timestamp	views_count_5h	avg_rating_90d
alice	2021-09-30 5:24	10	3.7
bob	2021-10-15 9:18	7	4.5
carl	2021-11-21 7:44	35	2.1

Concepts - Join

- Join multiple GroupBy-s (feature groups) together
 - Decide to show a particular user a particular item likelihood to buy
 - X User Features groups
 - Y Item Features
 - Z (User, Item) Features– past interactions
- Gather both Online & Offline
- Left & rights
 - labelled data + timestamped keys & feature derivations

Workflow

User workflow

Explore

- explore.py: Keyword lineage search
 - raw data > feature group > feature set > model
- compile.py:
 - validation & change management
- run.py:
 - data pipeline generation & testing

Compile

- Python is powerful
- Change Management
- Hand-off to scala engine

Run.py - testing

Offline flows

- Join training data generation
- StagingQuery arbitrary ETL
- GroupBy midnight accuracy metrics style
- Online flows
 - Lambda batch + streaming
 - Fetching Join & GroupBy
 - Uploading metadata

Run.py - scheduling

- Airflow based but flexible
- Joins: DAG each
- GroupBy: DAG per team
 - Lambda Serving
 - Streaming task is "heartbeat-or-restart"
- StagingQuery: DAG per team

Repo structure

- staging_queries free form etl
- group_bys aggregation primitive
- joins gathering multiple groupBy's
 - Folder/module per "team"
 - teams.json

Compiled artifact folder

Scripts - spark batch & streaming jobs + fetch online jar

Repo structure - one time setup

- Scripts
 - spark batch job submission
 - spark streaming jobs
 - fetch online api implementation jar

Workflows - offline

- Idempotency / Auto backfill
 - Job always tries to fill in all of its unfilled range
 - Airflow convention is task instance per date
 - Re-use compute & Natural ML user-flow
- Staging Queries
 - Free form ETL
 - Spark SQL Based
- Join Backfills already covered
- GroupBy Standalone Backfills

Workflows – Online

- Read optimized materialized views
 - Low latency ~10ms, high QPS
- Based on
 - Kafka
 - Spark Streaming
 - General KV Store API

Online Integration API

- One time integration
- KV Store
 - Point Read + Scan from timestamp
 - Single Write + Bulk Write
- Streaming
 - Decode Bytes into a Row in Chronon Schema
 - Intersection of Avro & Parquet

Airflow Scheduling

• We provide airflow integration template

Perf Stats

- Serving
 - Read: latency, qps, payload sizes breakdown by groupBy
 - Streaming Write: Freshness, qps, payload size
 - Bulk write: Compute time, data sizes etc.
- Training data generation
 - Compute time breakdowns
 - Row count

Data Stats

- Online offline consistency
 - Numerical: SMAPE
 - Categorical: Inequality percentage
 - Lists: Edit Distance
- Feature Quality
 - Coverage
 - Cardinality
 - Distribution
 - Correlation

Cases

- Online / Offline
- Backfilled / Logged
- PITC / Midnight accurate
- Events / Entities / Cumulative
- Windowed / Lifetime Aggregations
- Reversible / Non Reversible
- Single Column, Single Aggregation, Single window

Problem statement - Events PITC

user_id	timestamp	views_count_7d
alice	2021-09-30 5:24	10
bob	2021-10-15 9:18	7
carl	2021-11-21 7:44	35

Naive approach

```
SELECT user, query.timestamp as query_timestamp, COUNT(view_id) as
view_count_7d
FROM queries JOIN views ON
  queries.user = views.user AND
  view.timestamp < queries.timestamp AND
  view.timestamp >= (queries.timestamp - 7d) -- 7 * 24 * 3600 * 1000
milliseconds
GROUP BY user, query_timestamp
```

Complexity?

Naive approach

```
result = []
for query_ts in queries:
    view_count = 0
    for view_ts in views:
        if view_ts < query_ts and view_ts > query_ts - millis_7d:
            view_count += 1
        result.append((query_ts, view_ts))
# result now contains the desired data
```

Complexity?

N^2

Can we do better?

result = [] start = 0end = 0count = 1sorted_views = sorted(views) for query_ts in sorted(queries): $query_start = query_ts - 7 * day_millis$ # scan forward the start cursor and decrement the counter while start < len(sorted_views) and sorted_views[start] <</pre> query_start: start += 1count -= 1# scan forward the end cursor and increment the counter while end < len(sorted_views) and sorted_views[end] < guery_ts:</pre> end += 1count += 1result.append((guery_ts, count)) # result now contains desired data.

sort + cursors

- Complexity? n*log(n)
- Distribute friendly?
- Use of subtraction doesn't work for max, min etc.

• Even better?

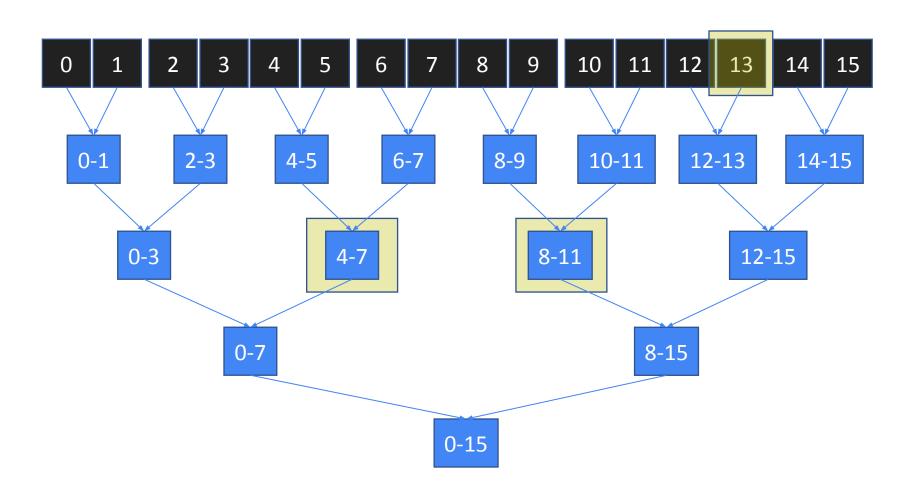
Some important observations

- Windows overlap a lot for a given key
- · Label data is usually much smaller than raw data
- Fraction of keys that engage on the platform is small
 - The fraction with labels could be even smaller.

Approaches

- · Windows overlap a lot for a given key
 - · Break windows into reusable tiles.
- · Label data is usually much smaller than raw data
 - · Use labels/queries to determine the tiles effectively
- Fraction of keys that engage on the platform is small
 - Use a compact approximate structure to filter out "most" of unwanted keys
 - Bloom filter false positives are okay, true negatives are not.

Tiling windows



Window tiling

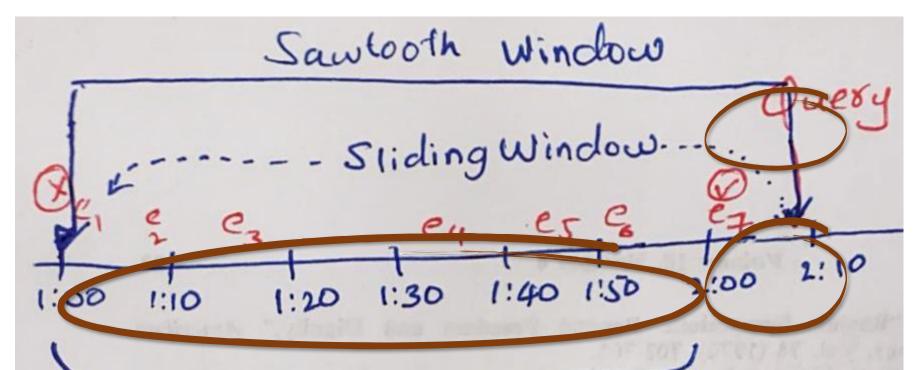
- Hopping tail is common across all queries that fall into the head!
- The idea is to compute tails and heads separately.

Window tiling

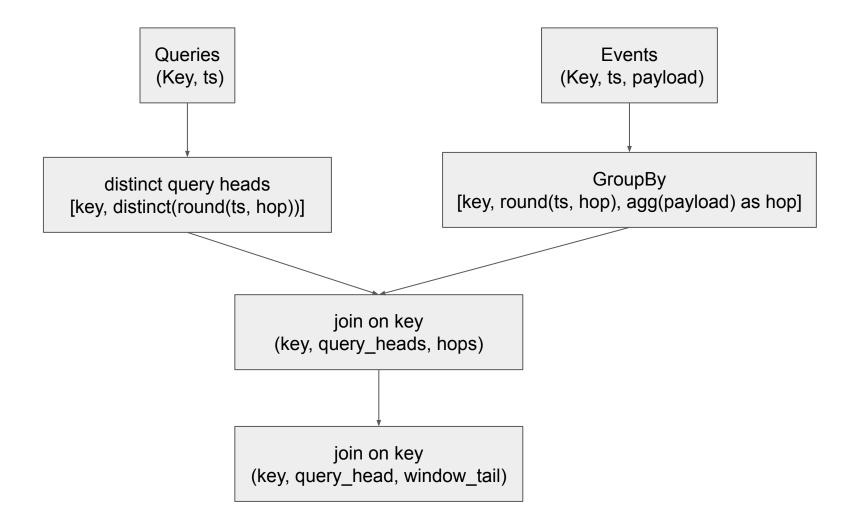
- · What if queries don't fit in memory?
 - Tiling can't be dynamic(query dependent)
- Hops?
 - Let's examine window semantics

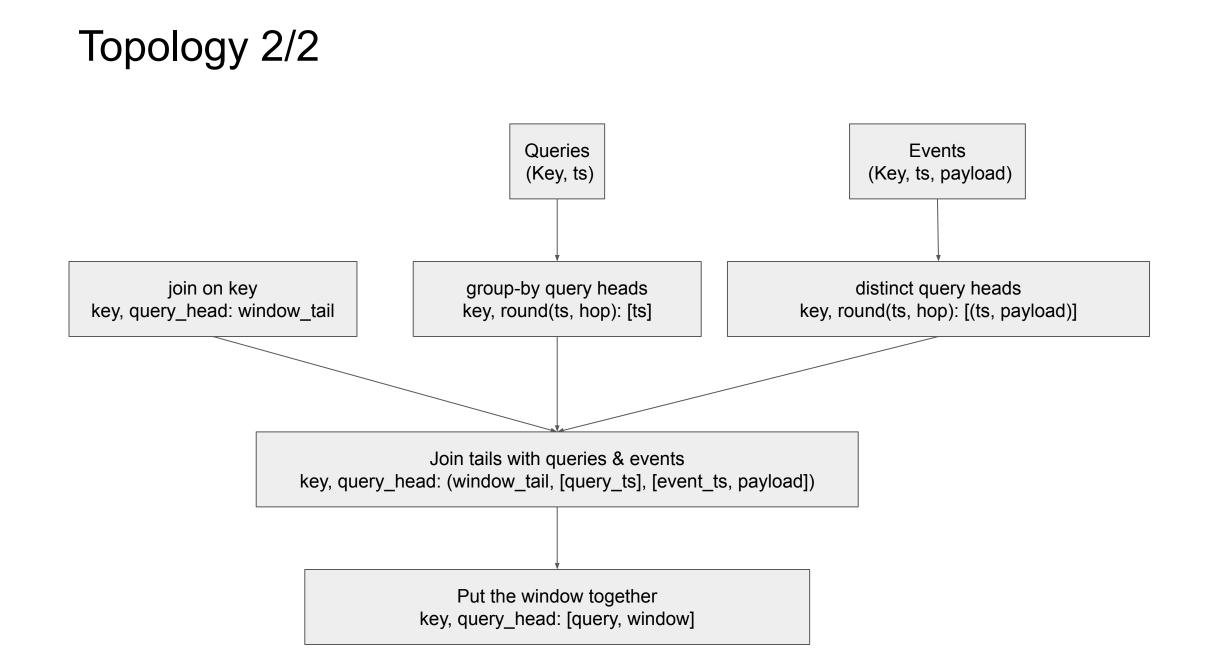
Window tiling

- We need to stitch together
 - Tail value
 - Raw events in the head
 - Queries in the head

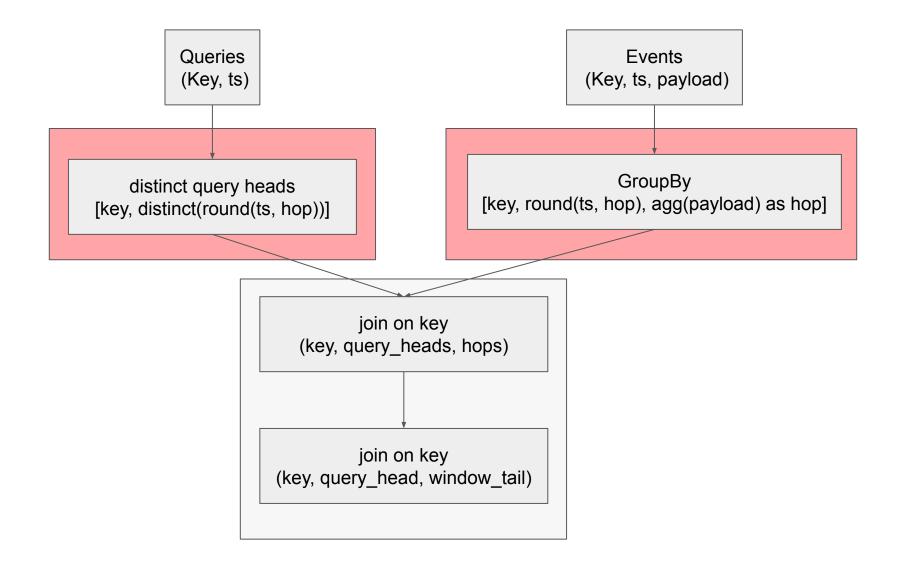


Topology 1/2





Topology 1/2



Topology 2/2 Queries **Events** (Key, ts) (Key, ts, payload) group-by query heads distinct query heads join on key key, query_head: window_tail key, round(ts, hop): [ts] key, round(ts, hop): [(ts, payload)] Join tails with queries & events key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together key, query_head: [query, window]

Window tiling - final

- Trade-off
 - Moving too much data
 - Evenly distributing work across machines

Resources

- Pig's perf page
- VLDB
 - anything that has "groupjoin" on it.
- sketches
 - Yahoo datasketches library
 - cardinality estimation CPC sketch
 - frequent items
 - Bloom filters

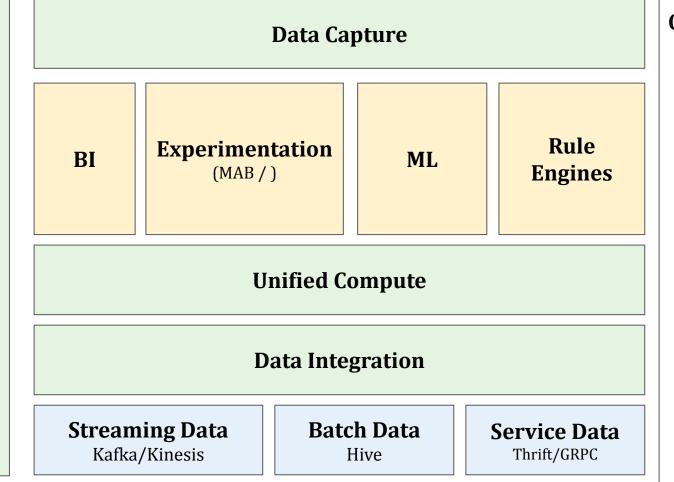
Opinions

- MPP compute trino, clickhouse etc., traditional OLAP
 - Don't scale
- RDD lacks "stream one side of the join into the other WHILE aggregating"
- OLAP / MPP is actually streaming
- Not new / flink / beam / tf

Interactive Analytics	BI	Metrics	Features					
SQL Monadic/ DataFrame/RDD		Page Rank	Social Hash		Model Parallel All Reduce	Data Parallel		
Micro Batch MPP		Graph			ML			
Uni-directional/DAG			Iterative					
Streaming								

Appendix - Tree Tiling

```
def generateTiles(left: Int, right: Int, tileConsumer: (Int, Int) => Unit): Int = {
  // find m, i such that
  // (m + 1) * (2 power i) < left <= m * (2 power i) <= right < (m + 1) * (2 power i)</pre>
  val powerOfTwo = 1 << (31 - Integer.numberOfLeadingZeros(left ^ right))</pre>
  val splitPoint = (right/powerOfTwo) * powerOfTwo
  // tiles on the left side
  var leftDistance = splitPoint - left
  var rightBoundary = splitPoint
  while(leftDistance > 0) {
     val maxPower = Integer.highestOneBit(leftDistance)
     tileConsumer(rightBoundary - maxPower, rightBoundary)
     rightBoundary -= maxPower
     leftDistance -= maxPower
  // tiles on the right side
  var rightDistance = right - splitPoint
  var leftBoundary = splitPoint
  while(rightDistance > 0) {
     val maxPower = Integer.highestOneBit(rightDistance)
     tileConsumer(leftBoundary, leftBoundary + maxPower)
     leftBoundary += maxPower
     rightDistance -= maxPower
  splitPoint
```



Chronon

- Unified view of data from three contexts
 - Batch / Hive / Service
 - Only possible if warehouse has conventions
 - Data integration is one of the hardest and most underrated problems.
- Unified compute
 - Scanning, Projections, Filtering, Join, Aggregations
 - Aggregation is where big data becomes small / meaningful data.
 - Time is global ordering. All existing OLAP systems don't model time. Warehouses have a strong time convention.
 - Realtime compute is essential for ML. RT with regression is better than transformers.
 - Without modeling time it is very hard to make computation tractable specially in RT case.

• Quality

- Input data, output data, realtime actioning
 - converate, correlation, distributions
- Compute in real-time & batch

Data Quality

