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Announcements

  You are in the right place!

Renamed to “Chronon” from zipline

Private Beta - user / contributor 

     If you are interested drop a mail to 

     nikhil.simha@airbnb.com or jack.song@airbnb.com 
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Agenda

What’s a feature platform? 

How to use it?



Machine learning flywheel

Training 
Data

Model

Inference

Raw Data

Online 
Features

Offline 
Features 
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Label extraction

Feature Refresh

Feature Serving

Feature Logging

Label Join



Goals - management

Unified API 

Feature Lifecycle

Authoring & Release

Feature observability

Training data quality

Realtime feature drift 

Online-offline consistency



Goals - API

Powerful & Composable Building blocks

Source types

Entities Events & Cumulative Events

GroupBy - Aggregation engine 

Join - PITC joins

Staging Query 

Arbitrary ETL to prepare data



Goals - computation

Log & Wait vs Backfill
       Large training data ranges -> lot of waiting

New features need to be derived from existing raw data
Realtime Features
      Hardest systems problem in ML
      Stream processing + Batch processing + Storage + Fetching
      Backfills 



Non-Goals 

 

No Model Training or Inference

Not for report generation use-cases  b            

Spark vs Clickhouse/Druid

Static usage is fine



Requirements

Airflow 
Scheduler
or B-Y-O

Kafka 
Event Store

Hive (optional)
Batch-Catalog

Spark 
Compute Engine

?
KV Store 

Bring-Your-Own



Offline - problem statement (item recommendation)

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table

code

https://gist.github.com/nikhilsimha/13cf46b93116bc3b0b08b4adc1483bd1


Offline - problem statement



Online - problem statement
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Examples – E-Commerce platform

Count of  Item views of a user in the last 5 hours – from a item view stream
Average rating of an item in the last 90 days – from a ratings table

Count / Average – Aggregation operations
Item Views/Rating – Aggregation Inputs
User/item – Aggregation Key
Last X days – Aggregation Window
Ratings Table/ Item View Stream – Data Source
Accuracy - Real-time or Daily



Data Sources



Service Fleet

Production 
Database

DB 
Snapshot

Event log 

Change
Capture
Stream

Event 
Stream

 Change 
capture log

Message Bus

Data Lake

Live

Derived 
Data

Media

Message Bus / Kafka Offline data store / hive

Applications that produce data



Service

online table

snapshotTable

table

mutationT
opic

topic

mutationTable

dimension 
tables

Message Bus /Kafka Offline data store / hive

Applications that produce data

fact tables



Sources - Events 

• Each partition contains data/events that occur in [ds, ds + 1]

• fct sources/dim sources

• PITC -> hive table

• materialized view -> topic



Events - item views

…

item user timestamp date

a user_1 10:30 am 9/20

b user_1 1:11 pm 9/20

a user_2 3:45 pm  9/20

item user timestamp date

c user_3 9:15 am 9/21

a user_2 5:31 pm 9/21

`item_views` - date Partitioned hive table



Sources - Entities 

• Each partition contains data for all entities - as of ds (date_string)
• DB Table snapshots 

• Sqoop

• Mutations! (CDC)
• Mutations Table & a Mutation Topic

•  Debezium + Kafka

• PITC -> snapshot table + mutation table
• materialized views -> snapshot table + mutation topic



Entities - item reviews
item user review updated_at ds

a user_1 good 09/10 09:03 9/20

b user_2 bad 09/20 17:15 9/20

d user_3 okay 09/05 13:21 9/20

`item_reviews` - snapshotTable 
(ds partitioned)

item user review updated_at ds

a user_1 good 09/10 09:03 9/21

b user_2 okay 09/21 09:03 9/21

c user_1 bad 09/21 15:31 9/21

is_before item user review updated_at mutation_ts date

true b user_2 bad 09/20 17:15 09/21 09:03 9/21

false b user_2 okay 09/21 09:03 09/21 09:03 9/21

true d user_3 okay 09/05 13:21 09/21 15:55 9/21

false c user_1 baad 09/21 15:31 09/21 15:31 9/21

`item_reviews_mutations` - 
mutationsTable (ds partitioned)



Sources - Cumulative

Insert only tables

Each new partition is a superset of any old partition

Latest partition is enough to backfill features at arbitrary points in time

No deletes/updates - mutations table not needed

Events in db tables



Cumulative Events

c user_3 9/21 9:15 am 9/21

a user_2 9/21 4:21 pm 9/21

`item_views` - date Partitioned hive table

item user timestamp date

a user_1 1/1 10:30 am 9/20

b user_1 3/21 1:11 pm 9/20

a user_2 9/20 3:45 pm 9/20

item user timestamp date

a user_1 1/1 10:30 am 9/20

b user_1 3/21 1:11 pm 9/20

a user_2 9/20 3:45 pm 9/20



Sources - Why?

Error-prone date wrangling

fct/event scan = partition_of(min_query_ts - max window)

cumulative scan = latest_partition

entity scan 

snapshot_table - partition_of(min_query_ts) - 1

mutation_table - partition_of(min_query_ts)

Optimization hints!



Code Examples



Examples
Count of  Item views of a user in the last 5 hours – from a item view stream



Examples
Average rating of an item in the last 90 days – from a ratings table



Examples - Join
Putting it all together



API

Spark SQL Expression language
Time is first class

Source Types
Windows
PITC joins

Aggregations 
Commutative
Bucketing
Auto Flattening

Composability of python



Architecture
Very High Level



 Online Feature Serving

KV
Store

ModelClient
Application 

Server

Chronon Conf

Feature 
Backfill

Batch

Streaming

Data Quality

Model
Training

run.py
(chronon-ai pip package)



User API
(compile.py)

System API

 Online Feature Serving

KV
Store

Client

Chronon Conf

Feature 
Backfill

Batch 
refresh

Streaming
refresh

Feature 
Quality

Execution
(run.py)

Airflow Spark



GroupBy



Concepts - GroupBy

• Group of Features derived from the same/similar sources of data
• Source 

• From + Where + Select - powered by spark sql
• Keys
• Aggregations

• Input - auto-flattened
• Operation
• Window - hourly or daily
• Bucketing - ratings by category - Map [category -> rating]

• Accuracy



Concepts - Aggregations

SUM, COUNT,  AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K, 

LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM…, APPROX_PERCENTILES

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates



Windows



Windows – Sliding

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Query
2:27

Query tail
  1:27

Sliding 
Window

e3 + e4 + e5

• Freshness

• Memory intensive



Windows – Hopping

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Hopping 
Window

e3 + e4 + e5

Query
2:27

Query tail
  1:27

Sliding 
Window

e4 + e5 + e6



Windows – Hopping

• Staleness

• As stale as the hop size

• Memory Efficient

• One partial per hop 

Query Time
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Windows – Sawtooth

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Hopping 
Window

e3 + e4 + e5

Query
2:27

Query tail
  1:27

Sliding 
Window

e4 + e5 + e6

Sawtooth 
Window

e3 + e4 + e5 + e6



Windows – Sawtooth

• Freshness

• Writes are taken into account immediately

• Memory 

• Partial aggregates per hop



Windows – Sawtooth

• Catch

• sum/count vs others

•  Consistency

Query Time

Hop 
Size

Hop 
SizeWindow 
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Join



Concepts - Join

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table



Concepts - Join



Concepts - Join

• Join multiple GroupBy-s (feature groups) together
• Decide to show a particular user a particular item – likelihood to buy

• X  User Features groups
• Y  Item Features
• Z  (User, Item) Features– past interactions

• Gather both Online & Offline
• Left & rights

• labelled data + timestamped keys & feature derivations



Workflow



User workflow

explore.py

Lineage search

Author compile.py

Code Validation

Release 

run.py

Pipeline gen

Testing



Explore 

• explore.py: Keyword lineage search 
• raw data > feature group > feature set > model

• compile.py: 
• validation & change management

• run.py:
• data pipeline generation & testing



Compile 

• Python is powerful

• Change Management

• Hand-off to scala engine



Run.py - testing 

• Offline flows
• Join – training data generation
• StagingQuery – arbitrary ETL
• GroupBy – midnight accuracy – metrics style

• Online flows
• Lambda – batch + streaming 
• Fetching Join & GroupBy
• Uploading metadata



Run.py - scheduling 

• Airflow based - but flexible

• Joins: DAG each

• GroupBy: DAG per team
• Lambda Serving
• Streaming task is “heartbeat-or-restart”

• StagingQuery: DAG per team



Repo structure

• staging_queries - free form etl

• group_bys – aggregation primitive

• joins – gathering multiple groupBy’s

•

Folder/module per “team” 
• teams.json 

• Compiled artifact folder 
Scripts - spark batch & streaming jobs + fetch online jar



Repo structure - one time setup

• Scripts 
• spark batch job submission

• spark streaming jobs 

• fetch online api implementation jar



Workflows  – offline

• Idempotency / Auto backfill
• Job always tries to fill in all of its unfilled range

• Airflow convention is task instance per date
• Re-use compute & Natural ML user-flow

• Staging Queries
• Free form ETL

• Spark SQL Based

• Join Backfills – already covered

• GroupBy Standalone Backfills



Workflows  – Online

• Read optimized materialized views
• Low latency  ~10ms, high QPS

• Based on
• Kafka 
• Spark Streaming 
• General KV Store API 



Online Integration API

• One time integration

• KV Store
• Point Read + Scan from timestamp
• Single Write + Bulk Write

• Streaming
• Decode Bytes into a Row in Chronon Schema
• Intersection of Avro & Parquet

Airflow Scheduling
• We provide airflow integration template

https://github.com/airbnb/chronon/blob/master/online/src/main/scala/ai/chronon/online/Api.scala


Perf Stats

• Serving
• Read: latency, qps, payload sizes - breakdown by groupBy
• Streaming Write: Freshness, qps, payload size
• Bulk write: Compute time, data sizes etc.

• Training data generation
• Compute time – breakdowns
• Row count



Data Stats

• Online offline consistency 
• Numerical: SMAPE
• Categorical: Inequality percentage
• Lists: Edit Distance

• Feature Quality
• Coverage
• Cardinality
• Distribution
• Correlation



Cases

• Online / Offline
• Backfilled / Logged
• PITC / Midnight accurate
• Events / Entities / Cumulative
• Windowed / Lifetime Aggregations
• Reversible / Non Reversible
• Single Column, Single Aggregation, Single window



Problem statement - Events PITC



Naive approach

Complexity?



Naive approach

Complexity?

N^2



Can we do better?
• sort + cursors

• Complexity? n*log(n)

• Distribute friendly?

• Use of subtraction - doesn’t work 

for max, min etc.

• Even better?



Some important observations

• Windows overlap a lot for a given key

• Label data is usually much smaller than raw data

• Fraction of keys that engage on the platform is small

• The fraction with labels could be even smaller.



Approaches

• Windows overlap a lot for a given key
• Break windows into reusable tiles.

• Label data is usually much smaller than raw data
• Use labels/queries to determine the tiles effectively

• Fraction of keys that engage on the platform is small
• Use a  compact approximate structure to filter out “most” of unwanted keys
• Bloom filter - false positives are okay, true negatives are not.



12 13

Tiling windows
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Window tiling

• Hopping tail is common across all queries that fall into the head!

• The idea is to compute tails and heads separately.



Window tiling

• What if queries don’t fit in memory?

• Tiling can’t be dynamic(query dependent)

• Hops?

• Let’s examine window semantics



Window tiling

• We need to stitch together 
• Tail value
• Raw events in the head
• Queries in the head



Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)



Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]



Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)



Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]



Window tiling - final

• Trade-off

• Moving too much data

• Evenly distributing work across machines



Resources

• Pig’s perf page
• VLDB 

• anything that has “groupjoin” on it.
• sketches

• Yahoo datasketches library
• cardinality estimation - CPC sketch
• frequent items 

• Bloom filters

https://pig.apache.org/docs/latest/perf.html#specialized-joins


• MPP compute - trino, clickhouse etc., traditional OLAP
• Don’t scale

• RDD lacks “stream one side of the join into the other WHILE aggregating”
• OLAP / MPP is actually streaming
• Not new / flink / beam / tf 

Opinions

Streaming

Micro 
Batch MPP

Uni-directional/DAG Iterative

Graph ML

Interactive 
Analytics BI Metrics Features

Page 
Rank

Social 
Hash … Model Parallel

All ReduceSQL Monadic/
DataFrame/RDD

Data 
Parallel



Appendix - Tree Tiling



Streaming Data
Kafka/Kinesis

Batch Data
Hive

Service Data
Thrift/GRPC

Data Integration

Unified Compute 

D
at

a 
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al
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BI ML
Rule 

Engines
Experimentation

(MAB / )

Chronon
● Unified view of data from three contexts

○ Batch / Hive / Service
○ Only possible if warehouse has conventions
○ Data integration is one of the hardest and most 

underrated problems.
● Unified compute

○ Scanning, Projections, Filtering, Join, 
Aggregations

○ Aggregation is where big data becomes small / 
meaningful data.

○ Time is global ordering. All existing OLAP systems 
don’t model time. Warehouses have a strong time 
convention.

○ Realtime compute is essential for ML. RT with 
regression is better than transformers.

○ Without modeling time it is very hard to make 
computation tractable - specially in RT case.

● Quality
○ Input data, output data, realtime actioning 

■ converate, correlation, distributions
○ Compute in real-time & batch

Data Capture




