Chronon

Airbnb’s Feature Engineering Framework

Nikhil Simha
nikhil.simha@airbnb.com

Announcements

You are in the right place!
Renamed to “Chronon” from zipline
Private Beta - user / contributor

If you are interested drop a mail to

nikhil.simha@airbnb.com or jack.song@airbnb.com

mailto:nikhil.simha@airbnb.com
mailto:jack.song@airbnb.com

Cristian Haozhen Pengyu Vamsee Varant Sophie
Figueroa Ding Hou Yarlagadda Zanoyan Wang

Atul Jack Haichun Nikhil
Kale Song Chen Simha

Agenda

What's a feature platform?

How to use it?

Machine learning flywheel

Offline Training
Features Data
Labels
Raw Data
Feature [Logging Model
Online Feature Serving
Inference

Features

Goals - management

Unified API

Feature Lifecycle
Authoring & Release

Feature observability
Training data quality
Realtime feature drift

Online-offline consistency

Goals - API

Powerful & Composable Building blocks
Source types
Entities Events & Cumulative Events
GroupBYy - Aggregation engine
Join - PITC joins
Staging Query
Arbitrary ETL to prepare data

Goals - computation

Log & Wait vs Backfill
Large training data ranges -> lot of waiting
New features need to be derived from existing raw data
Realtime Features
Hardest systems problem in ML
Stream processing + Batch processing + Storage + Fetching
Backfills

Non-Goals

No Model Training or Inference
Not for report generation use-cases b
Spark vs Clickhouse/Druid

Static usage is fine

Requirements

gt

Kafka Hive (optional) Spark
Event Store Batch-Catalog Compute Engine
? k

KV Store Airflow
Bring-Your-Own Scheduler

or B-Y-O

Offline - problem statement (item recommendation)

user_id timestamp view_count_5h

* From view stream

alice 2021-09-30 5:24

avg_rating_90d
bob 2021-10-15 9:18

* From ratings db table

or-1g 2021-11-21 7:44

code

https://gist.github.com/nikhilsimha/13cf46b93116bc3b0b08b4adc1483bd1

Offline - problem statement

timestamp views_count_5h avg_rating_90d

2021-09-30 5:24 10 3.7
2021-10-15 9:18 7 4.5

2021-11-217:44 2.1

Online - problem statement

user_id timestamp views_count_5h avg_rating_90d

alice 2021-09-30 5:24 10 3.7
bob 2021-10-15 9:18 7 4.5

carl 2021-11-217:44 2.1

Training data set

Examples — E-Commerce platform

Count of ltem views of a user in the last 5 hours — from a item view stream

Average rating of an item in the last 90 days — from a ratings table

Count / Average — Aggregation operations

ltem Views/Rating — Aggregation Inputs
User/item — Aggregation Key

Last X days — Aggregation Window

Ratings Table/ Item View Stream — Data Source

Accuracy - Real-time or Daily

Data Sources

Applications that produce data

Service Fleet

Derived
Data

Production

// Database
| DB

Snapshot
ghange Change
apture .
Stream capture log

Event
Stream Event log

Message Bus / Kafka Offline data store / hive

Applications that produce data

el online table

\’ snapshotTable

dimension
tables
muta'glonT mutationTable
opic
topic table fact tables

Message Bus /Kafka Offline data store / hive

Sources - Events

- Each partition contains data/events that occur in [ds, ds + 1]
- fct sources/dim sources
- PITC -> hive table

* materialized view -> topic

Events - item views

item

user timestamp date item user timestamp
user_1 10:30 am 9/20 C user_3 9:15 am
user_1 1:11 pm 9/20 a user_2 5:31 pm

user_2 3:45 pm 9/20

‘item_views' - date Partitioned hive table

date

9/21
9/21

Sources - Entities

« Each partition contains data for all entities - as of ds (date_string)
- DB Table snapshots

« Sgoop
- Mutations! (CDC)

« Mutations Table & a Mutation Topic

« Debezium + Kafka
- PITC -> snapshot table + mutation table
- materialized views -> snapshot table + mutation topic

Entities - item reviews

item user review updated_at ds
a user_1 good 09/10 09:03 9/20
b user_2 bad 09/20 17:15 9/20
is_before item
d user_3 okay 09/05 13:21 9/20
true b
false b
item user review updated_at ds
true d
a user_1 good 09/10 09:03 9/21
false c
b user_2 okay 09/21 09:03 9/21
C user_1 bad 09/21 15:31 9/21

‘item_reviews - snapshotTable
(ds partitioned)

user

user_2

user_2

user_3

user_1

review

bad

okay

okay

baad

updated_at

09/20 17:15

09/21 09:03

09/05 13:21

09/21 15:31

mutation_ts

09/21 09:03

09/21 09:03

09/21 15:55

09/21 15:31

‘item_reviews _mutations’ -
mutationsTable (ds partitioned)

date

9/21

9/21

9/21

9/21

Sources - Cumulative

Insert only tables

Each new partition is a superset of any old partition
Latest partition is enough to backfill features at arbitrary points in time
No deletes/updates - mutations table not needed

Events in db tables

Cumulative Events

item

user timestamp date
user_1 1/1 10:30 am | 9/20
user_1 3/211:11 pm | 9/20

user_2 9/20 3:45 pm | 9/20

item

user
user_1
user_1
user_2
user_3

user 2

timestamp
1/1 10:30 am
3/21 1:11 pm
9/20 3:45 pm
9/21 9:15 am

9/21 4:21 pm

‘item_views' - date Partitioned hive table

date

9/20

9/20

9/20

9/21

9/21

Sources - Why?

Error-prone date wrangling
fct/event scan = partition_of(min_query_ts - max window)
cumulative scan = latest_partition
entity scan
snapshot_table - partition_of(min_query_ts) - 1
mutation_table - partition_of(min_query_ts)

Optimization hints!

Code Examples

Examples

Count of Item views of a user in the last 5 hours — from a item view stream

view_features = GroupBym
sources=|
EventSource
table="user_activity.user_views_table",
topic="user_views_stream",
query=query.Query(

selects={

"view": "if(context['activity type'l = 'item view', 1, 0)",
}I
wheres=["user != null"])

]r
keys=["user", "item"],
aggregations=|
Aggregation
operation=0peration.COUNT,
windows=[Window(length=5, timeUnit=TimeUnit.HOURS)]),

1)}

Examples

Average rating of an item in the last 90 days — from a ratings table

ratings_features = GroupBy|(
sources=|

EntitySource
snapshotTable="item_info.ratings_snapshots_table",

mutationsTable="item_info.ratings_mutations_table"
mutationsTopic="ratings_mutations_topic",
query=query.Query(

selects={

"rating": "CAST(rating as DOUBLE)",

})
1,
keys=["item"],
aggregations=[Aggregation
operation=0peration.AVERAGE,
windows=[Window(1length=90, timeUnit=TimeUnit.DAYS)]),

]

Examples - Join
Putting it all together

item_rec_features = Join|(
left=EventSource(
table="user_activity.view_purchases",
query=query.Query
start_partition='2021-06-30"

)

right_parts=|
JoinPart(groupBy=view_features),
JoinPart(groupBy=ratings_features.

API

Spark SQL Expression language
Time is first class

Source Types

Windows

PITC joins
Aggregations

Commutative

Bucketing

Auto Flattening
Composability of python

Architecture

Very High Level

|
I
Feature I | Model
e Backfill : Training
It I
// I
e I
.7 |
Chronon Conf [~ Data Quality |
\ |
7 \\ |
\\ |
\\ |
\\ I
. Batch R '
. \v .
\ \
\ | . .
: Application
X KV 4 Client —{ Model PP
/ Store | Server
I
: ~— |
Streaming |
I
nline Feature Serving I
|
I

run.py
(chronon-ai pip package)

Feature
Backfill
Chronon Conf . Feature
Quality
7 System API
N G
(compile.py) ~
Batch KV :
refresh Store
N~
Streaming
refresh
| Online Feature Serving
Execution
(run.py)

Client

Airflow

GroupBy

Concepts - GroupBYy

» Group of Features derived from the same/similar sources of data
« Source
 From + Where + Select - powered by spark sql
e Keys
 Aggregations
* Input - auto-flattened
» Operation
* Window - hourly or daily
« Bucketing - ratings by category - Map [category -> rating]
e Accuracy

Concepts - Aggregations

SUM, COUNT, AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K,
LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM..., APPROX_PERCENTILES

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates

Windows

" Pa I Sliding
Windows — Sliding Window
/ e3+ed+e5 \
. Query
Que1r:3£;all pyp
! :
: I
I |
! :
el e2 el : ed e5 e6 :
|
| I
' I
|
1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
Freshness

Memory intensive

. . Sliding
Windows — Hopping Window
///////////””ﬂ————_e4+e5+ﬂi___—_——-‘\\\\\\\\\\\\\
. Query
Que;r:);;all pyp
! :
: I
I |
! :
el e2 e3 : ed e5 e6 :
|
| :
' I
|
1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
Hopping
Window

e3+ed +eb

Windows — Hopping

Staleness

As stale as the hop size

Memory Efficient

One partial per hop

Staleness

/

Query Time

Windows — Sawtooth

Sliding
Window
/ e4 +e5 +eb \
tail Query
Que1r:3£7a| pyp
| |
| |
I |
I |
! :
el e2 e3 : ed e5 eb :
|
| I
' :
|
1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
Hopping
Window

e3+ed +eb

Sawtooth
Window
e3+e4+e5+eb

Windows — Sawtooth

Freshness

Writes are taken into account immediately

Memory

Partial aggregates per hop

Windows — Sawtooth

Catch

sum/count vs others

Consistency

Effective

Window

Query Time

Hop
Size
. Hop
qudow Size
Size
>

Join

Concepts - Join

user_id
alice

bob

carl

timestamp

2021-09-30 5:24

2021-10-15 9:18

2021-11-21 7:44

view_count_5h

* From view stream
avg_rating 90d

* From ratings db table

Concepts - Join

user_id timestamp views_count_5h avg_rating_90d

alice 2021-09-305:24 10 3.7

bob 2021-10-15 9:18 7 4.5

carl 2021-11-21 7:44 2.1

Concepts - Join

« Join multiple GroupBy-s (feature groups) together
« Decide to show a particular user a particular item — likelihood to buy

« X User Features groups
Y Item Features
« Z (User, Item) Features— past interactions

« Gather both Online & Offline

« Left & rights

» labelled data + timestamped keys & feature derivations

Workflow

User workflow

Q & %O

explore.py Author compile.py run.py

Lineage search Code Validation Pipeline gen

Release Testing

Explore

- explore.py: Keyword lineage search

- raw data > feature group > feature set > model
- compile.py:
« validation & change management

- run.py:

« data pipeline generation & testing

Compile

Python is powerful
Change Management

Hand-off to scala engine

Run.py - testing

- Offline flows
« Join — training data generation
« StagingQuery — arbitrary ETL

« GroupBy — midnight accuracy — metrics style

« Online flows

« Lambda — batch + streaming
« Fetching Join & GroupBYy
« Uploading metadata

Run.py - scheduling

Airflow based - but flexible
Joins: DAG each

GroupBy: DAG per team
Lambda Serving

Streaming task is “heartbeat-or-restart”

StagingQuery: DAG per team

Repo structure

staging_queries - free form etl
group_bys — aggregation primitive

joins — gathering multiple groupBYy's

Folder/module per “team”

teams.json

Compiled artifact folder
Scripts - spark batch & streaming jobs + fetch online jar

Repo structure - one time setup

Scripts
- spark batch job submission
« spark streaming jobs

« fetch online api implementation jar

Workflows — offline

- ldempotency / Auto backfill
* Job always tries to fill in all of its unfilled range
« Airflow convention is task instance per date
« Re-use compute & Natural ML user-flow
. Staging Queries
* Freeform ETL
« Spark SQL Based

- Join Backfills — already covered

- GroupBy Standalone Backfills

Workflows — Online

- Read optimized materialized views
« Low latency ~10ms, high QPS

- Based on
- Kafka

« Spark Streaming
« General KV Store API

Online Integration AP

- One time integration
- KV Store

« Point Read + Scan from timestamp
« Single Write + Bulk Write
- Streaming

« Decode Bytes into a Row in Chronon Schema
« Intersection of Avro & Parquet

Airflow Scheduling

« We provide airflow integration template

https://github.com/airbnb/chronon/blob/master/online/src/main/scala/ai/chronon/online/Api.scala

Perf Stats

« Serving
« Read: latency, gps, payload sizes - breakdown by groupBy
« Streaming Write: Freshness, gps, payload size
« Bulk write: Compute time, data sizes etc.
- Training data generation
« Compute time — breakdowns

« Row count

Data Stats

* Online offline consistency
« Numerical: SMAPE
« Categorical: Inequality percentage
- Lists: Edit Distance
« Feature Quality
« Coverage
« Cardinality
« Distribution
« Correlation

Cases

* Online / Offline

- Backfilled / Logged

« PITC / Midnight accurate

- Events / Entities / Cumulative

- Windowed / Lifetime Aggregations

- Reversible / Non Reversible

- Single Column, Single Aggregation, Single window

Problem statement - Events PITC

timestamp views_count_7d

2021-09-30 5:24
2021-10-15 9:18

2021-11-21 7:44

Naive approach

SELECT user, query.timestamp as query_timestamp, COUNT(view_id) as
view_count_7d
FROM queries JOIN views ON

querlies.user = views.user AND

view.timestamp < queries.timestamp AND

view.timestamp >= (queries.timestamp - 7d) —— 7 *x 24 x 3600 * 1000

GROUP BY user, query_timestamp

Complexity?

Naive approach

result = []
for query_ts in queries:
view_count = 0
for view_ts in views:
if view_ts < query_ts and view_ts > query_ts — millis_7d:
view_count += 1
result.append((query_ts, view_ts))

Complexity?

NA2

Can we do better?

result = []
start = 0
end =
count =1
sorted_views = sorted(views)
for query_ts in sorted(queries):
query start query ts - 7 % day mlllls
whtte start < len(sorted v1ews) and sorted v1ews[start] <
query_start:

start += 1
count =1

while end < len(sorted_views) and sorted_views[end] < query_ts:
end += 1
count += 1
result.append((query_ts, count))

sort + cursors
« Complexity? n*log(n)
Distribute friendly?

» Use of subtraction - doesn’t work

for max, min etc.

* Even better?

Some important observations

Windows overlap a lot for a given key
Label data is usually much smaller than raw data
» Fraction of keys that engage on the platform is small

 The fraction with labels could be even smaller.

Approaches

Windows overlap a lot for a given key
Break windows into reusable tiles.
Label data is usually much smaller than raw data
Use labels/queries to determine the tiles effectively
» Fraction of keys that engage on the platform is small
 Use a compact approximate structure to filter out “most” of unwanted keys
« Bloom filter - false positives are okay, true negatives are not.

Tiling windows

0-3

B

0-15

8-15

i_l_3_|

14

Window tiling

* Hopping tail is common across all queries that fall into the head!

 The idea is to compute tails and heads separately.

Window tiling

What if queries don't fit in memory?
« Tiling can’t be dynamic(query dependent)
 Hops?

 Let's examine window semantics

Window tiling

* We need to stitch together
« Tail value
« Raw events in the head

e Queries in the head

Sawtooth wWindow

Topology 1/2

Queries Events
(Key, ts) (Key, ts, payload)
distinct query heads GroupBy
[key, distinct(round(ts, hop))] [key, round(ts, hop), agg(payload) as hop]
join on key

(key, query_heads, hops)

join on key
(key, query_head, window _tail)

Topology 2/2

Queries Events
(Key, ts) (Key, ts, payload)
join on key group-by query heads distinct query heads
key, query head: window _tail key, round(ts, hop): [ts] key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query head: (window_tail, [query_ts], [event _ts, payload])

Put the window together
key, query_head: [query, window]

Topology 1/2

Queries Events
(Key, ts) (Key, ts, payload)
distinct query heads GroupBy
[key, distinct(round(ts, hop))] [key, round(ts, hop), agg(payload) as hop]
\/
join on key

(key, query_heads, hops)

join on key
(key, query_head, window _tail)

Topology 2/2

Queries Events
(Key, ts) (Key, ts, payload)
join on key group-by query heads distinct query heads
key, query head: window _tail key, round(ts, hop): [ts] key, round(ts, hop): [(ts, payload)]

——

Join tails with queries & events
key, query head: (window_tail, [query_ts], [event _ts, payload])

Put the window together
key, query_head: [query, window]

Window tiling - final

« Trade-off
* Moving too much data

« Evenly distributing work across machines

Resources

* Pig’s perf page
- VLDB
« anything that has “groupjoin” on it.
» sketches
* Yahoo datasketches library
« cardinality estimation - CPC sketch
« frequent items
« Bloom filters

https://pig.apache.org/docs/latest/perf.html#specialized-joins

Opinions

MPP compute - trino, clickhouse etc., traditional OLAP
 Don't scale
RDD lacks “stream one side of the join into the other WHILE aggregating”
OLAP / MPP is actually streaming
Not new / flink / beam / tf

Y

. N\
Interacyve Bl Metrics Features
Analytics)
SQL

Y

N J

Y

Monadic/ T Page Social T Model Parallel Data
DataFrame/RDD b Rank Hash | 1 All Reduce Parallel
% Y
Micro
Batch I MPP Graph ML
<> -
Uni-directional/DAG Iterative

AN

AN

Y

Streaming

AN

Appendix - Tree Tiling

def generateTiles(left: Int, right: Int, tileConsumer: (Int, Int) => Unit): Int =

val powerOfwa =< (31 - Integer.numberOfLeadingZeros(left A right))
val splitPoint = (right/power0fTwo) * powerOfTwo

var leftDistance = splitPoint - left

var rightBoundary = splitPoint

while(leftDistance > 0) {
val maxPower = Integer.highestOneBit(leftDistance)
tileConsumer(rightBoundary - maxPower, rightBoundary)
rightBoundary —= maxPower
leftDistance —= maxPower

}

var rightDistance = right - splitPoint

var leftBoundary = splitPoint

while(rightDistance > 0) {
val maxPower = Integer.highestOneBit(rightDistance)
tileConsumer(leftBoundary, leftBoundary + maxPower)
leftBoundary += maxPower
rightDistance —= maxPower

}

splitPoint

Data Quality

Data Capture
Experimentation Rule
Bl (MAB /) ML Engines
Unified Compute

Data Integration

Streaming Data Batch Data
Kafka/Kinesis Hive

Service Data
Thrift/GRPC

Chronon

e Unified view of data from three contexts

O
@)
@)

Batch / Hive / Service

Only possible if warehouse has conventions
Data integration is one of the hardest and most
underrated problems.

e Unified compute

o Scanning, Projections, Filtering, Join,
Aggregations

o Aggregation is where big data becomes small /
meaningful data.

o Time is global ordering. All existing OLAP systems
don’t model time. Warehouses have a strong time
convention.

o Realtime compute is essential for ML. RT with
regression is better than transformers.

o Without modeling time it is very hard to make
computation tractable - specially in RT case.

e Quality
o Input data, output data, realtime actioning
m converate, correlation, distributions
o Compute in real-time & batch

