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Mature technology companies have a holistic view of data

Reporting Descriptive Diagnostic Predictive Prescriptive
2 dimensional Multi-dimensional Understanding of why Understanding of Understanding of best
understanding of understanding of something happened what will most likely course of action to
what happened what happened happen in the future take to achieve an

outcome



Complexity and
lack of business
adoption prevents
ROl and scale-out

$5008B in global spend on Al initiatives in
2023 (pc)

54% of built ML models make it into
production (cartner)

90+ days to build a production-ready ML
model (Algorithmia)

85% of ML models in production fail to
produce business value (Gartner


https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.idc.com%2Fgetdoc.jsp%3FcontainerId%3DprUS48881422&esheet=52928088&newsitemid=20220928005133&lan=en-US&anchor=IDC+predicts&index=3&md5=8c67dfeed7bafdf3251d8b88d889f9fe&_gl=1*n93k1x*_ga*MTc2NjM1ODQ5My4xNjU1MzA2NTkw*_ga_ZQWF70T3FK*MTY2NDM3OTM4NC4xMi4wLjE2NjQzNzkzODQuMC4wLjA.
https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.gartner.com%2Fen%2Fnewsroom%2Fpress-releases%2F2022-08-22-gartner-survey-reveals-80-percent-of-executives-think-automation-can-be-applied-to-any-business-decision&esheet=52928088&newsitemid=20220928005133&lan=en-US&anchor=Gartner+reports&index=4&md5=8c3f33d889afa47ad20951635e658569&_gl=1*1a3xcgn*_ga*MTc2NjM1ODQ5My4xNjU1MzA2NTkw*_ga_ZQWF70T3FK*MTY2NDM3OTM4NC4xMi4wLjE2NjQzNzkzODQuMC4wLjA.
https://venturebeat.com/datadecisionmakers/why-businesses-take-a-month-or-more-to-deploy-ml-models-and-what-you-can-do/
https://www.infoworld.com/article/3639028/why-ai-investments-fail-to-deliver.html

“Features” are
not just for
data scientists
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A universal
semantic layer
bridges metrics
and features




Powering enterprise feature stores with a semantic layer
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VALUE

= Leverage business-vetted
metrics and dimensions to
define a set of managed
features.

= Expose managed features
directly to data scientists and Al
platforms via python.

= Aggregate managed features
with broader set of features
(e.g. streaming) within feature
store.

= Serve features directly to Al
models or AutoML platforms



Discover business relevant measures from AtScale data model

df_ts = data_model.get_data(['date', 'item', 'state', 'category', 'total_units_sold', 'average_units_sold',
'sample_standard_deviation_units_sold', 'population_variance_units_sold',

'max_units_sold', 'sample_variance_units_sold', 'day_over_day_units_sold',
'previous_days_units_sold'])
df_ts.head()

E X a, , ’ p / e : Generate time-series features based on those measures

df_ts = feature_utils.generate_time_series_features(data_model, df_ts, numeric_features=['total_units_sold'l,

o
re time_hierarc ate_hierarchy', level='date',
O Ca S Il ,g group_features=['state', 'category','item'], shift=7)

df_ts.tail()

WI th a unl Versa/ Train Al model with new time-series features, assess performance

from sklearn. import train_test_split

[ ]
y_column t’utaliunit s_sold*
test_df.replace([np.inf, —np.infl, np.nan, inplace=Tru

test_df.dropna(how='all"')
SR va=N(testidf-iilociz]
[ ] ~test_df.columns.isin([y_column, 'item', ‘'category', 'id*'1)1,
n n test_df.ilocl[:, test_df.columns.isin([y_columnl)l)
a e er rlse X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
xg_reg = xgb.XGBRegressor()
xg_reg.-fit(X_train.ilocl[:, ~X_train.columns.isin(['date*', ‘'state'l)]l, y_train)

fea ture S to re Publish a feature view in a feature store to be used for time series predictions

project.add_feature_view(view_ name="predictions"',
project_name='time_series_model"',
entities=["item', ‘'state'l,
timestamp="‘date"’,

features=["'sum_predicted_units_sold*,
'total_units_sold’',
'total_units_sold_28 day_max'],

ttl=datetime. timedelta(weeks=0),)




THANK YOU

Learn more;
atscale.com/resources

atscale.com/demo




