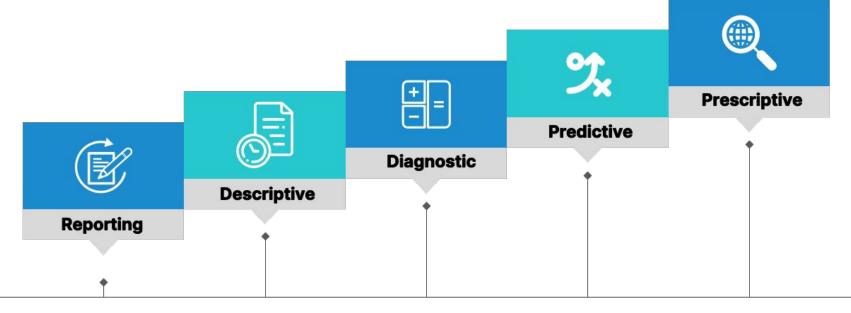
Powering Enterprise Feature Stores With A Universal Semantic Layer

Gaurav Rao, EVP & GM Machine Learning and AI, AtScale

Mature technology companies have a holistic view of data



Reporting 2 dimensional

understanding of

what happened

Descriptive

Multi-dimensional understanding of what happened **Diagnostic** Understanding of why something happened

Predictive

Understanding of what will most likely happen in the future

Prescriptive

Understanding of best course of action to take to achieve an outcome

Complexity and lack of business adoption prevents ROI and scale-out

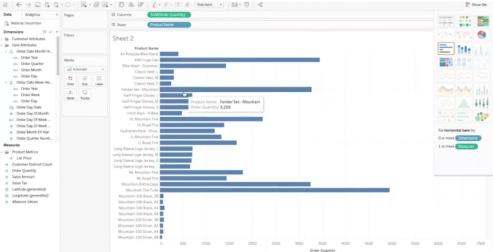
\$500B in global spend on AI initiatives in 2023 (IDC)

54% of built ML models make it into production (Gartner)

<u>90+ days</u> to build a production-ready ML model (Algorithmia)

85% of ML models in production fail to produce business value (*Gartner*)

"Features" are not just for data scientists



A universal semantic layer bridges metrics and features

Powering enterprise feature stores with a semantic layer



VALUE

- Leverage business-vetted metrics and dimensions to define a set of managed features.
- Expose managed features directly to data scientists and Al platforms via python.
- Aggregate managed features with broader set of features (e.g. streaming) within feature store.
- Serve features directly to Al models or AutoML platforms

Discover business relevant measures from AtScale data model

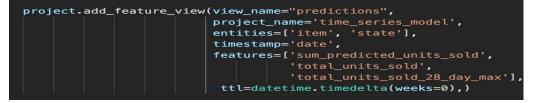
<pre>df_ts = data_model.get_data(['date', 'item', 'state', 'category', 'total_units_sold', 'average_units_sold',</pre>
'max_units_sold', 'sample_variance_units_sold', 'day_over_day_units_sold',
'previous_days_units_sold'])
df_ts.head()

Generate time-series features based on those measures

df_ts = feature_utils.generate_time_series_features(data_model, df_ts, numeric_features=['total_units_sold'],
<pre>time_hierarchy='date_hierarchy', level='date',</pre>
group_features=['state', 'category','item'], shift=7)
df_ts.tail()

Train AI model with new time-series features, assess performance

Publish a feature view in a feature store to be used for time series predictions



THANK YOU

Learn more:

atscale.com/resources

atscale.com/demo