
Organized by 

Building a Feature Store for 
Hypergrowth
Brian Seo, Sr. Software Engineer, Doordash



Agenda
1. What Caused Our Hypergrowth
2. Architecture
3. Offline Storage
4. Redis + Elasticache and It’s Limits
5. CockroachDB as an Online Store



➔ More data available

➔ Much simpler to 

process large quantities 

of data

➔ Large models are easier 

to train

➔ Simplified Feature 

Engineering

➔ Guardrails that protect 

against failure

➔ Abstraction of storage 

concepts

What Drove Our Growth?

Make Things Easy Expansion of Scope

➔ Expansion into different 

verticals: Groceries, 

Convenience, Alcohol

➔ More verticals means 

more features and a 

much larger keyspace

Industry Advancements





Fabricator: Feature Engineering + Storage



Fabricator
A Declarative Framework That Handles

❏ Feature Engineering
❏ Feature Registry
❏ Online / Offline Storage



Fabricator: Simplify Feature Creation

PySpark ScriptsSimple SQL Simplify Deployment

Read more at: https://doordash.engineering/2022/01/11/introducing-fabricator-a-declarative-feature-engineering-framework/



Fabricator: Offline Feature Storage + Fetching



Online Storage: Redis -> CRDB



1. Availability + Resilience to Failure
2. Low latency on retrieval of 1000s of keys
3. Cost Effectiveness

Guiding Principles For Online Storage



Redis + Elasticache

➔ Extremely Fast, can support a much 

higher throughput than other solutions

➔ Can scale horizontally and vertically

➔ Resilient to failure 

➔ Can support an extremely high QPS

Why Use Redis



Redis + Elasticache

Going from KV to Hashmap Storage



Scaling using Elasticache functions is not 
practical

1. Scaling up a cluster can take upwards of 12 
hours depending on the size and utilization

2. Scaling down can take even longer
3. Drops in performance and availability are 

significant during scaling operations and 
behavior is largely dependent on the redis 
client

Difficult to Maintain at Scale
Scaling Operations are Time Consuming

No Downtime Scaling Operation (~3-10 hours)

1. Spin up a cluster from backup
2. Backfill all features uploaded since last 

backup
3. Redirect traffic from services to new 

cluster
4. Remove old cluster



➔ Hash keys are expensive to create and will increase storage usage 

at a much higher rate

➔ Embeddings are exceptionally expensive to store

➔ Provisioning storage predictably is difficult

➔ Eviction behavior needs to be aggressive to keep costs down

➔ Can lose features if upstream tables on not reliably maintained

Difficult to Maintain at Scale

Storage Is Expensive



Cockroach DB As An Alternative



1. Best performer in last round of benchmarks

2. Maintenance operations are virtually seamless

3. Can be utilized as multi-region

4. Can autoscale and automatically respond to skewed usage

5. Near instantaneous recovery from node failures

6. Supports a wide range of indexing schemes

7. Uses PostgresQL

Why Cockroach DB?



What Makes it Different

Sequential keys are stored in blocks called ranges that 
allow similar values to be colocated on the same node



Growing Pains



Tables All Start on a Single Node



More Keys == More CPU



1. Sort data before uploading
2. Batch rows into groups
3. Shuffle Batches
4. Update the entire row, not a subset

Upload Throughput Optimization



Improve Read / Write By Optimizing For Key Density



50% Improvement in p999s



1. Creating Features on Demand
2. Getting smarter about the values that 

should be updated
3. Optimizing storage formats for a given 

call pattern

Looking Forward



Questions?



Thank You!


