Building a Feature Store for
Hypergrowth

Brian Seo, Sr. Software Engineer, Doordash

“ FEATURE STORE
SUMMIT
kﬂh 2022 Organized by 423 HOPSWORKS

AhWNa

Agenda

What Caused Our Hypergrowth
Architecture

Offline Storage

Redis + Elasticache and It’s Limits
CockroachDB as an Online Store

What Drove Our Growth?

Make Things Easy

>

Simplified Feature
Engineering

Guardrails that protect
against failure
Abstraction of storage

concepts

Expansion of Scope

>

Expansion into different
verticals: Groceries,
Convenience, Alcohol
More verticals means
more features and a

much larger keyspace

Industry Advancements

-> More data available

=> Much simpler to
process large quantities
of data

-> Large models are easier

to train

Feature Registry

databricks
@ python

PySpcnr‘lgz

@ dagster

db
X snowflake

amazon
S3

Feature
Engineering

Offline Storage

Feature
Service

o

Sibyl Prediction

Service

¢ CockroachDB

&P redis

Online Storage

O

Caller Services

Fabricator: Feature Engineering + Storage

Fabricator

A Declarative Framework That Handles

A Feature Engineering
A Feature Registry
[Online / Offline Storage

FEATURE STORE
~ SUMMIT

2022

Fabricator: Simplify Feature Creation

Simple SQL PySpark Scripts Simplify Deployment

 store eta avy ' : store_eta_avg

| SRR store_eta_avg : store_eta_avg

fact_sFore_eta . eta_last_20min
' fact_store_eta eta_last_week

SELECT : eta_calculation_script.

store_id i -

, avg(eta) eta_last_20min some_redis_cluster
, avg(eta_last_week) eta_last_week

FROM fact_store_eta

WHERE

time = {datetime}

Read more at: https://doordash.engineering/2022/01/11/introducing-fabricator-a-declarative-feature-engineering-framework/

Fabricator: Offline Feature Storage + Fetching

amazon PYSPQF”(?

S3
features = Retrievies Protobuff Automatically Joins
['eta_last_week', Messages — » Fetchesfromss —_, letchedfeatures
ota Tagi 50 ; B 1 Containing The based on retrieved
= == ! Storage + Entity dates and entity

Relations relationships

Online Storage: Redis > CRDB

Guiding Principles For Online Storage

1. Availability + Resilience to Failure
2. Low latency on retrieval of 1000s of keys
3. Cost Effectiveness

Redis + Elasticache

Why Use Redis

= Extremely Fast, can support a much

higher throughput than other solutions

-> Can scale horizontally and vertically s S A R
9 Re S||| ent tO fa”ure ((;o::‘r;aschDB 1127 47 6.1 8.8 59 78 10.8
) behind a Ib)
= Can support an extremely high QPS syleDB |108 |69 |22 |285 |w |22 |28
(3 nodes)
Cassandra 18.8 235 (30 38 236 32 435
(3 nodes)
YugabyteDB 257 432 (503 54.2 334 383 415
(3 nodes)

Redis + Elasticache

Going from KV to Hashmap Storage

Overall Impact on Redis Memory and CPU

Prorated units from our production cluster

[l Before] After
5.00)
) _min"), 3600) 298 GB
, "et: , 7.00) e
store_id|eta_last_20min|eta_last_week eta las ak''), 3600)
1 5.00 7.00 208 vCPUs
2 20.00 21.00 ,
min", 5.00)
7.00) 112GB
100 =
72 vCPUs
O .
Memory Allocation CPU Utilization

per 1B Features per 10M Reads/sec

Difficult to Maintain at Scale

Scaling Operations are Time Consuming

Scaling using Elasticache functions is not
practical

1. Scaling up a cluster can take upwards of 12
hours depending on the size and utilization

2. Scaling down can take even longer

3. Drops in performance and availability are
significant during scaling operations and
behavior is largely dependent on the redis
client

No Downtime Scaling Operation (~3-10 hours)

N

Spin up a cluster from backup

Backfill all features uploaded since last
backup

Redirect traffic from services to new
cluster

Remove old cluster

Difficult to Maintain at Scale

Storage Is Expensive

- Hash keys are expensive to create and will increase storage usage
at a much higher rate

Embeddings are exceptionally expensive to store

Provisioning storage predictably is difficult

Eviction behavior needs to be aggressive to keep costs down

A 20 2 27

Can lose features if upstream tables on not reliably maintained

Cockroach DB As An Alternative

Why Cockroach DB?

—_

N o o bk~ W D

Best performer in last round of benchmarks

Maintenance operations are virtually seamless

Can be utilized as multi-region

Can autoscale and automatically respond to skewed usage
Near instantaneous recovery from node failures

Supports a wide range of indexing schemes

Uses PostgresQL

What Makes it Different

id |feature_name . .
(PK) (PK) Value |range_id|node _id

1 feat 1 1 5

1 feat_2 il 5

30 feat 1 2 3

30 feat_2

30 feat 3 3
10001 feat_3 100 2
21412 feat_2 500 1

Sequential keys are stored in blocks called ranges that
allow similar values to be colocated on the same node

Growing Pains

Tables All Start on a Single Node

~
a
X

o
=}
X

°
=
£
:
o
e
2
a
3]

N
a
X

o
B3

FEATURE STORE
kyl. SUMMIT
2022

More Keys == More CPU

Max CPU %

]y

i

B

== Max CPU% == Max-Avg == CPU Spread

Queries

g |

B nJ

== Write QPS

Replica Quiescence

I — J~fw—_)ﬁLﬂ,~_ _rh,r”\i“ﬂv__j

|

0% —

== Active Ranges

Upload Throughput Optimization

Sort data before uploading

Batch rows into groups

Shuffle Batches

Update the entire row, not a subset

FEATURE STORE
~ SUMMIT

2022

Improve Read / Write By Optimizing For Key Density

ETL Tables

store_id| eta_feat 1 |eta_feature_2
5 3.0 2.2
7 10.1 20.1

store_id| x feat 1

5 3
7 8
SRR Dense Format

id feature_name feature_value id - feature_value_map
store_id=5 eta_feat_1 3.0 :

— - store_id=5 | eta_features {eta_feat_1.. 2.9,
store_id=5 eta_feat_2 2.2 eta_feat_2: 2.2}
store_id=5 x_feat_1 3 store_id=5 x_features {x_feat_1: 3}
store_id=7 eta_feat_1 10.1 store_id=7 eta_features {eta_feat_llz 10.1,

- eta_feat_2: 20.1}
store_id=7 eta_feat_2 20.1
store_id=7 x_feat 1 8 store_id=7 x_features {x_feat_1: 8}

.

FEATURE STORE
SUMMIT
2022

50% Improvement in p999s

Server Query Latency -

UTAS "o M a
| A g bt \ Py
J brp e Nyt v Voh g A T R VoAnt Sy a g R

AN AAAA DN A~

Looking Forward

Creating Features on Demand

Getting smarter about the values that
should be updated

Optimizing storage formats for a given
call pattern

FEATURE STORE
v SUMMIT
2022

Questions?

Thank You!

