Hopsworks Feature Store after 4
years: Lessons learned and
what's next

Fabio Buso, VP of Engineering, Hopsworks

Moritz Meister, Head of Feature Store Engineering, Hopsworks

“ FEATURE STORE
SUMMIT
k,y]. 2022 Organized by 423 HOPSWORKS

Feature Stores and the Data Problem

FEATURE STORE
‘ SUMMIT
2022

Operational ML
with real-time data

Operational ML
with historical data

Business Value

Analytical ML

s Artisanal ML L.
____________ (Laptop ML)/O o
‘Big’ Data P
Structured O/O/ _______
Data O =T
...................... |
BI: Al:
DESCRIPTIVE & DIAGNOSTIC PREDICTIVE & PRESCRIPTIVE

ANALYTICS ANALYTICS

FEATURE STORE
‘ SUMMIT
2022

Operational ML
with real-time data

Operational ML
with historical data

Business Value

Analytical ML

{} DataProblem? ..~
o Artisanal ML Wi
___________ (Laptop ML)/O o
‘Big’ Data P
Structured o T
Data o .-
BI: Al:
DESCRIPTIVE & DIAGNOSTIC PREDICTIVE & PRESCRIPTIVE

ANALYTICS ANALYTICS

FEATURE STORE

SUMMIT
2022

Operational ML
with real-time data

Operational ML
with historical data

Business Value

Analytical ML

1} Data Write Challenge-*
SEET Artisanal ML P
----------- (Laptop ML)/O e
‘Big’ Data P
Structured o T
Data o .-
BI: Al:
DESCRIPTIVE & DIAGNOSTIC PREDICTIVE & PRESCRIPTIVE

ANALYTICS ANALYTICS

ﬁﬁ‘g -. ' ‘
STORES
< i < <3

A (short) history of Feature Store capabilities

From batch to prediction service

£ HOPSWORKS 3.0

...... 7‘(‘1 |

Streaming

(Orchestration) (Lineage)
AAAAAA ‘l\z 1
K (SDK Language) (Stream Write) :
1
: (Batch Write) (Storage Connectors) (Online Storage)
1
' (0ffline Storage) (Statistics)

AN J
Y
- 4 years - 1 year

Focus: Data Write Challenge

A (short) history of Feature Store capabilities

From batch to prediction service

£ HOPSWORKS 3.0

Streaming

spad L @
§|"| pandas

(Orchestration) (Lineage)

,,,,,, <"Z
SprK (SDK Language) (Stream Write) (Data Versioning)
(Batch Write) (Storage Connectors) (Online Storage) Q’omt -in-time J°1"‘°) (Alerting)

(0ffline Storage) (Statistics) (Data Validation) (Transformations)
OO
N
© Data Engineer (O ML Engineer) : (o Data Scientist)
1
1

N JHN y
N / N

- 4 years - 1 year

Focus: Data Write Challenge Focus: Data Access Challenge

A (short) history of Feature Store capabilities

From batch to prediction service

£ HOPSWORKS 3.0

Streaming

A

|"| pandas

(Orchestration) (Lineage)
z (SDK Language) (Stream Write) (Data Versioning)
(Batch Write) (Storage Connectors) (Online Storage) Q’omt -in-time J°1"‘°) (Alerting)

(0ffline Storage) (Statistics) (Data Validation) (Transformations) (PredICtlon Serv:.ces)
>)

O O >
© Data Engineer (O ML Engineer) : (o Data Scientist) u (O Data Scientist) (O Biz Analyst)
I 1
I 1
: O ML Engineer
1
1

N i VRN J
Y ' Y Y

- 4 years - 1 year

Focus: Data Write Challenge Focus: Data Access Challenge Closing the loop

AAAAAA

Write to Feature Groups, read from Feature Views

Effort 1. Making Feature Pipelines accessible to Data Scientists

£ HOPSWORKS

Write API Feature Groups ‘ Feature Views
sSqQL P Spaﬁl(\z Aggreg ations [Search, Versioning, Statistics, Code]
[Lineage, Provenance]

A Dimensionality
Reductions

P Validation

Write to Feature Groups, read from Feature Views

Effort 1. Making Feature Pipelines accessible to Data Scientists

£ HOPSWORKS

Write API Feature Groups » Feature Views
P Agg reg ations [Search, Versioning, Statistics, Code]
. . . [Lineage, Provenance]
A Dimensionality

Reductions

P Validation

Write to Feature Groups, read from Feature Views

Effort 2. Making Data accessible to Data Scientists

£ HOPSWORKS

Write API Feature Groups ‘ Feature Views Read API

, - . Transformations
P Aggreg at|0ns [Search, Versioning, Statistics, Code] P NOfmaIizatiOn
. . . [Lineage, Provenance] One-hot enCOding
A Dimensionality
Reductions @ File Formats
@ Vvalidation @ Point-in-time joins

Feature Groups and the Dataframe API
Data Write Challenge

Why DSLs don’t make the cut

Advantages of Dataframes

1. Flexibility - DSLs are use case specific
2. User Experience - No additional learning curve and no lock in

3. Bring your own pipeline - Keep existing libraries and pipelines

Why Spark is not suitable for Data Scientists

1. Resource Estimation
- Distributed environment resources don’t map 1:1 to local environments
2. Debugging
- Debugqging in distributed systems quickly becomes a complex task
3. Models are rarely trained on Spark Dataframes
- Modeling Frameworks are often not distributed tools
4. Wrapping SQL in Python functions is not pythonic
- At serving time there is often no Spark context available

window_len = "4h"
cc_group = trans_df[["cc_num", "amount", "datetime"1] \
.groupby("cc_num").rolling(window_len, on="datetime")

df_4h_count = pd.DataFrame(cc_group.mean())
. . df_4h_count.columns = ["“trans_freq", "datetime"]
Feature englneerlng df_4h_count = df_4h_count.reset_index(level=["cc_num"])
df_4h_count = df_4h_count.drop(columns=["cc_num", "datetime"])
df_4h_count = df_4h_count.sort_index()
window_aggs_df = window_aggs_df.merge(df_4h_count, left_index=True, right_index=Tr

window_aggs_fg = fs.get_or_create_feature_group(

name="transactions_4h_aggs_fraud_batch_fg",
version=1,
In|t|a||ze Feature Group metadata description="Aggregate transaction data over 4hwindows.",
primary_key=["cc_num"],
event_time="datetime"

Write feature data (23) window_aggs_fg.insert(window_aggs_df)

Where does Great Expectations fit in?

Validate data before it is made available to data scientists

= . Enterprise Data l‘.‘ H O PSWO RKS @E’% Enterprise Al
— Data Sources g k> Applications & Services
(h s N
L. Model
Appllc_atlons Development
Services Feature Groups »
A Online & Batch
— Apps
v
Data
warehouse [Search, Versioning, Statistics, Code] Reporting
v

~ - [Lineage, Provenance] . J

Where does Great Expectations fit
Validate data before it is made available to data scientists

Pandas Dataframe

[| Expectation
E
|

O Result

ExpectationConfiguration(
expectation_type="expect_column_min_to_be_between",
kwargs={

validation_result = {
"success": false,
Yresultt: {
"observed_value": 17.738671,

"column":"age_at_transaction",
"min_value": 18,
"max_value": 130

"element_count": 106020,
"missing_count": null,
"missing_percent": null

h

®B »p @

It

Where does Great Expectations fit

Validate data before it is made available to data scientists

£ HOPSWORKS

€ Back

Overview
Features
Provenance
Expectations
Tags
Alerts
API

Data preview

Feature statistics

dataval v Q Search for

Expectations @

7 . L fig

din STRICT

Validation Reports

Validation Results

mode (data is ingested if and only if all i

Edit Expectation Suite

validation date $

25-08-2022 22:25

25-08-2022 22:20

25-08-2022 22:17

25-08-2022 22:09

success percent §

57.14285714285714%

5714285714285714%

57.14285714285714%

57.14285714285714%

evaluated expectations

= E | E

successful expectations

(4]
(4]
(4]

unsuccessful expectations ¢

HH

H

result ¢

rejected

ingested

ingested

ingested

|

le

|«

e

Python, Pandas and Feature Views
Data Access Problem

Feature Reusability requires Views - Feature Views
Why Data Scientists want Python-centric APIs

1. Models are trained with Python libraries - DSLs are use case specific
2. Training frameworks might require file formats - Scikit-learn & Pandas, Tensorflow &
Tfrecord, Pytorch & Numpy
Point-in-time joins are hard - Writing PIT joins in SQL, Spark or Python is error prone
4. Transformations happen at feature retrieval time - Reusing a feature often means
limiting the set of entities a model is trained on, which again leads to different statistics
5. Spark not available at feature retrieval time - At serving time there is often no Spark

context available

Feature Views for training data, batch scoring and low latency serving

The API for Data Scientists

— _ Enterprise Data é" HOPSWORKS 2 Enterprise Al

— Data Sources Applications & Services

~

e N e
C . Model
Applications Development

- . c
))
Services Feature Views 2o
L J ==} Online & Batch
= =
N g 3 Apps
Mee— c LI:_’
Data E
warehouse [Search, Versioning, Statistics, Code] Reporting
v
L J [Lineage, Provenance] . o

Feature Reusability with Feature Views

Pandas like join making PIT joins transparent

trans_fg = fs.get_feature_group("transactions_fraud_batch_fg",
version=1)

window_aggs_fg = fs.get_feature_group("transactions_4h_aggs_fraud_batch_fg",
version=1)

Get Feature Group metadata

ds_query = trans_fg.select(["fraud_label", "category", "amount",

SeleCt features "age_at_transaction", "days_until_card_expires", "loc_delta"l) \
.join(window_aggs_fg.select_except(["cc_num"]))

feature_view = fs.create_feature_view(
name="transactions_view",
query=ds_query,
. . labels=["fraud_label"],
Create Feature View along with transformation_functions={
tranSfOrmationS "category": label_encoder,
"amount": min_max_scaler,
"days_until_card_expires": min_max_scaler,

Reading from the Feature View
One API to rule them all

td_version, td_job = feature_view.create_train_validation_test_split(
description = 'transactions fraud batch training dataset',

Training Data as files ik S

validation_size = 0.2,
test_size = 0.1

Training Data in-memory
as Pandas Dataframe

(10) X_train, y_train, X_val, y_val, X_test, y_test = feature_view.get_train_validation_test_split(1)

start_time = int(float(datetime.strptime("2022-01-03 00:00:01",
date_format).timestamp()) * 1000)

NeW batCheS Of data end_time = int(float(datetime.strptime("2022-03-31 23:59:59",
for Scoring date_format).timestamp()) * 1000)

march_transactions = feature_view.get_batch_data(
start_time = start_time, end_time = end_time)

feature_view.init_serving(1)
feature_array = feature_view.get_feature_vector(
{"primary_key": 1})

Real-time feature lookup

Endboss: Prediction Service

Integrating Data APIs with Model APIs

FEATURE STORE
k’yl. SUMMIT
2022

Building Prediction Services with KServe Integration

Closing the loop

£ HOPSWORKS

|

Applications

Services

|

Applications a
- —) <
Services Feature Groups ‘ Feature Views ‘ Vodel <|7)
4 e
Serving
—
v
Data) \ /
warehouse
— [Search, Versioning, Statistics, Code]
(.
[Lineage, Provenance]

Predictions and Features

Tying it all together

The predictor interface

Establish connection to Feature Store

Initialize Feature View

Loading the model from a model registry

Implementing the predict interface using
the Feature View

import
import
import
import

0s
numpy as np
hsfs

joblib

s Predict(object):

lef __init_ (self):

" Initializes the serving state, reads a trained model"""

hsfs.connection()
fs_conn.get_feature_store()

fs_conn
self.fs

self.fv = self.fs.get_feature_view("transactions_view", 1)

self.fv.init_serving(1)

self.model = joblib.load(
os.environ["ARTIFACT_FILES_PATH"] + "/fraud.model.pkl")
print("Initialization Complete")

predict(self, inputs):
""" Serves a prediction request usign a trained model"""

return self.model.predict(
np.asarray(
self.fv.get_feature_vector({"cc_num": inputs[@]}))
.reshape(1, -1)
).tolist()

app.hopsworks.ai

Try it out! Serverless and free!

FEATURE STORE
~ SUMMIT
2022

