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Feature Stores and the Data Problem
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A (short) history of Feature Store capabilities

From batch to prediction service
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Write to Feature Groups, read from Feature Views

Effort 1. Making Feature Pipelines accessible to Data Scientists
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Write to Feature Groups, read from Feature Views

Effort 2. Making Data accessible to Data Scientists
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Feature Groups and the Dataframe API
Data Write Challenge




Why DSLs don’t make the cut

Advantages of Dataframes

1. Flexibility - DSLs are use case specific
2. User Experience - No additional learning curve and no lock in

3. Bring your own pipeline - Keep existing libraries and pipelines



Why Spark is not suitable for Data Scientists

1. Resource Estimation
- Distributed environment resources don’t map 1:1 to local environments
2. Debugging
- Debugqging in distributed systems quickly becomes a complex task
3. Models are rarely trained on Spark Dataframes
- Modeling Frameworks are often not distributed tools
4.  Wrapping SQL in Python functions is not pythonic
- At serving time there is often no Spark context available




window_len = "4h"
cc_group = trans_df[["cc_num", "amount", "datetime"1] \
.groupby("cc_num").rolling(window_len, on="datetime")

df_4h_count = pd.DataFrame(cc_group.mean())
. . df_4h_count.columns = ["“trans_freq", "datetime"]
Feature englneerlng df_4h_count = df_4h_count.reset_index(level=["cc_num"])
df_4h_count = df_4h_count.drop(columns=["cc_num", "datetime"])
df_4h_count = df_4h_count.sort_index()
window_aggs_df = window_aggs_df.merge(df_4h_count, left_index=True, right_index=Tr

window_aggs_fg = fs.get_or_create_feature_group(

name="transactions_4h_aggs_fraud_batch_fg",
version=1,
In|t|a||ze Feature Group metadata description="Aggregate transaction data over 4hwindows.",
primary_key=["cc_num"],
event_time="datetime"

Write feature data (23) window_aggs_fg.insert(window_aggs_df)




Where does Great Expectations fit in?

Validate data before it is made available to data scientists
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Where does Great Expectations fit
Validate data before it is made available to data scientists

Pandas Dataframe

[ | Expectation
E
|

O Result

ExpectationConfiguration(
expectation_type="expect_column_min_to_be_between",
kwargs={

validation_result = {
"success": false,
Yresultt: {
"observed_value": 17.738671,

"column":"age_at_transaction",
"min_value": 18,
"max_value": 130

"element_count": 106020,
"missing_count": null,
"missing_percent": null
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Where does Great Expectations fit

Validate data before it is made available to data scientists
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Python, Pandas and Feature Views
Data Access Problem




Feature Reusability requires Views - Feature Views
Why Data Scientists want Python-centric APIs

1.  Models are trained with Python libraries - DSLs are use case specific
2. Training frameworks might require file formats - Scikit-learn & Pandas, Tensorflow &
Tfrecord, Pytorch & Numpy
Point-in-time joins are hard - Writing PIT joins in SQL, Spark or Python is error prone
4. Transformations happen at feature retrieval time - Reusing a feature often means
limiting the set of entities a model is trained on, which again leads to different statistics
5. Spark not available at feature retrieval time - At serving time there is often no Spark

context available



Feature Views for training data, batch scoring and low latency serving

The API for Data Scientists
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Feature Reusability with Feature Views

Pandas like join making PIT joins transparent

trans_fg = fs.get_feature_group("transactions_fraud_batch_fg",
version=1)

window_aggs_fg = fs.get_feature_group("transactions_4h_aggs_fraud_batch_fg",
version=1)

Get Feature Group metadata

ds_query = trans_fg.select(["fraud_label", "category", "amount",

SeleCt features "age_at_transaction", "days_until_card_expires", "loc_delta"l) \
.join(window_aggs_fg.select_except(["cc_num"]))

feature_view = fs.create_feature_view(
name="transactions_view",
query=ds_query,
. . labels=["fraud_label"],
Create Feature View along with transformation_functions={
tranSfOrmationS "category": label_encoder,
"amount": min_max_scaler,
"days_until_card_expires": min_max_scaler,




Reading from the Feature View
One API to rule them all

td_version, td_job = feature_view.create_train_validation_test_split(
description = 'transactions fraud batch training dataset',

Training Data as files ik S

validation_size = 0.2,
test_size = 0.1

Training Data in-memory
as Pandas Dataframe

(10 ) X_train, y_train, X_val, y_val, X_test, y_test = feature_view.get_train_validation_test_split(1)

start_time = int(float(datetime.strptime("2022-01-03 00:00:01",
date_format).timestamp()) * 1000)

NeW batCheS Of data end_time = int(float(datetime.strptime("2022-03-31 23:59:59",
for Scoring date_format).timestamp()) * 1000)

march_transactions = feature_view.get_batch_data(
start_time = start_time, end_time = end_time)

feature_view.init_serving(1)
feature_array = feature_view.get_feature_vector(
{"primary_key": 1})

Real-time feature lookup




Endboss: Prediction Service

Integrating Data APIs with Model APIs
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Building Prediction Services with KServe Integration

Closing the loop
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Tying it all together

The predictor interface

Establish connection to Feature Store

Initialize Feature View

Loading the model from a model registry

Implementing the predict interface using
the Feature View

import
import
import
import

0s
numpy as np
hsfs

joblib

s Predict(object):

lef __init_ (self):

" Initializes the serving state, reads a trained model"""

hsfs.connection()
fs_conn.get_feature_store()

fs_conn
self.fs

self.fv = self.fs.get_feature_view("transactions_view", 1)

self.fv.init_serving(1)

self.model = joblib.load(
os.environ["ARTIFACT_FILES_PATH"] + "/fraud.model.pkl")
print("Initialization Complete")

predict(self, inputs):
""" Serves a prediction request usign a trained model"""

return self.model.predict(
np.asarray(
self.fv.get_feature_vector({"cc_num": inputs[@]}))
.reshape(1, -1)
).tolist()
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