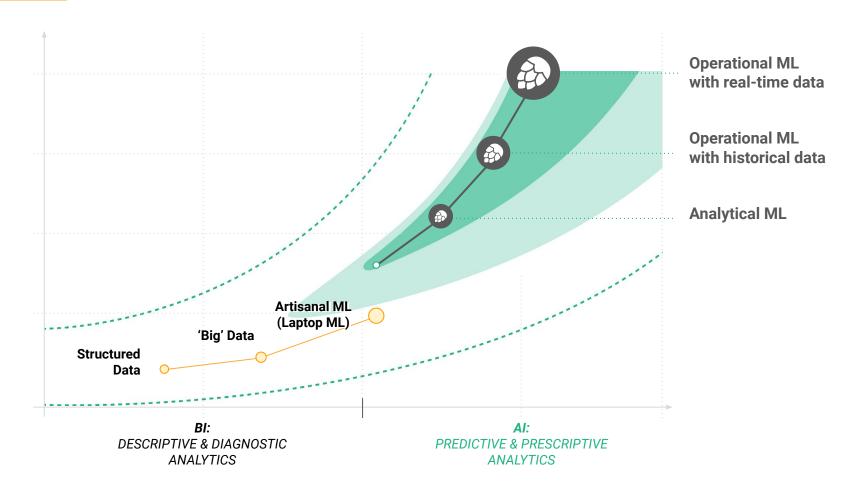
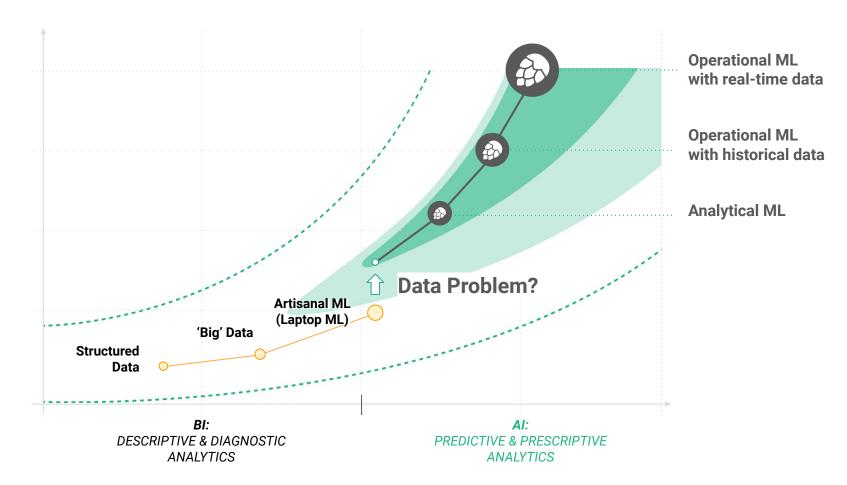
Hopsworks Feature Store after 4 years: Lessons learned and what's next

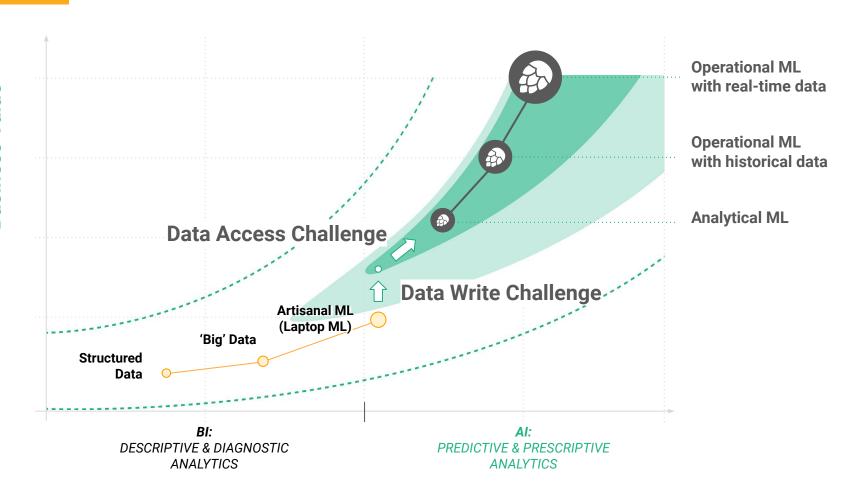
Fabio Buso, VP of Engineering, Hopsworks

Moritz Meister, Head of Feature Store Engineering, Hopsworks

Feature Stores and the Data Problem

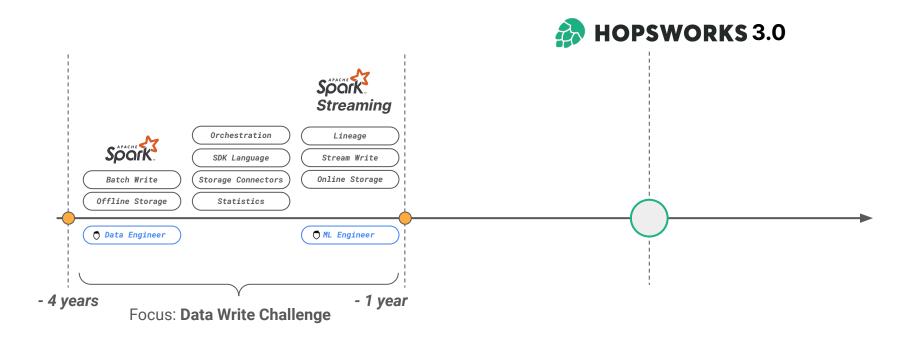






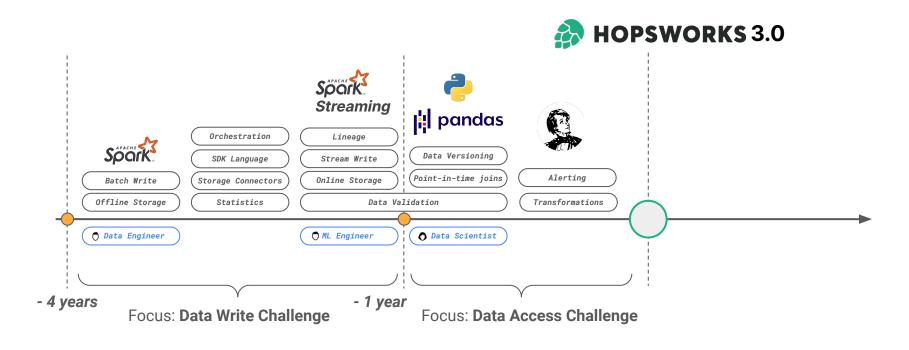
A (short) history of Feature Store capabilities

From batch to prediction service



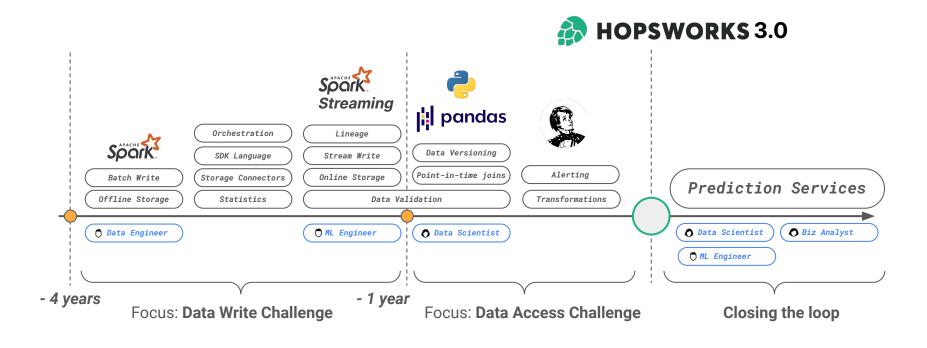
A (short) history of Feature Store capabilities

From batch to prediction service



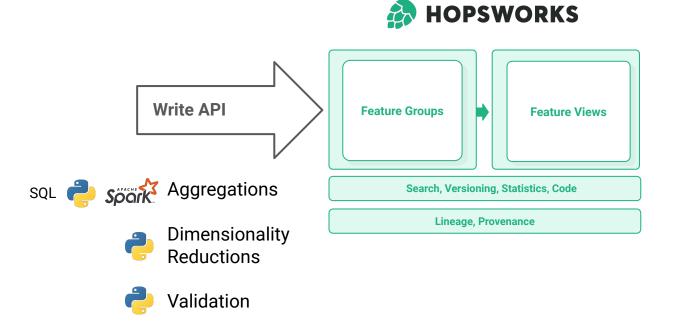
A (short) history of Feature Store capabilities

From batch to prediction service



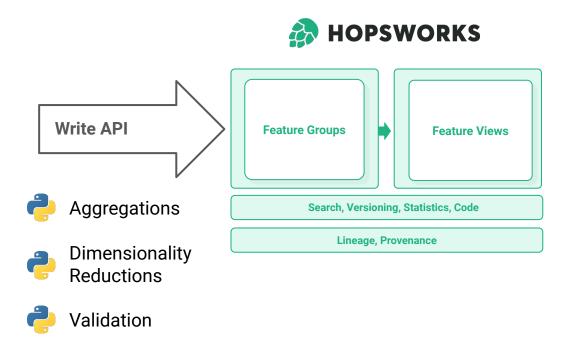
Write to Feature Groups, read from Feature Views

Effort 1. Making Feature Pipelines accessible to Data Scientists



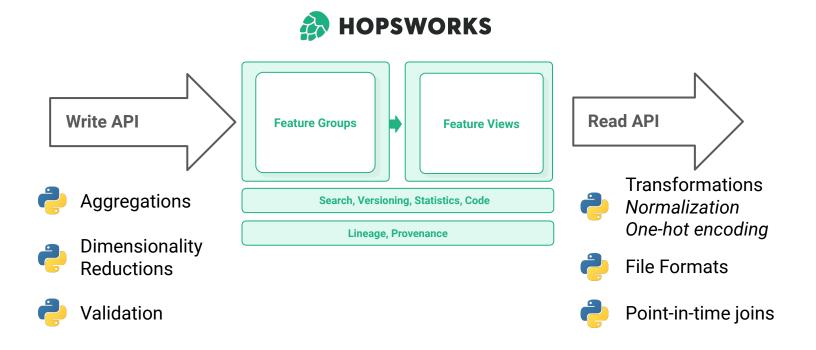
Write to Feature Groups, read from Feature Views

Effort 1. Making Feature Pipelines accessible to Data Scientists



Write to Feature Groups, read from Feature Views

Effort 2. Making Data accessible to Data Scientists



Feature Groups and the Dataframe API Data Write Challenge

Why DSLs don't make the cut

Advantages of Dataframes

- 1. **Flexibility** *DSLs* are use case specific
- 2. **User Experience** No additional learning curve and no lock in
- 3. **Bring your own pipeline** Keep existing libraries and pipelines

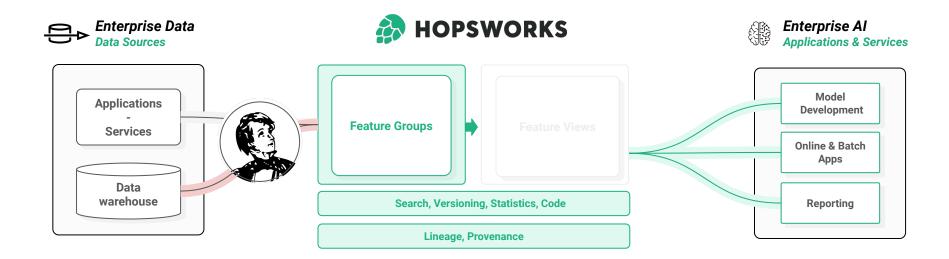
Why Spark is not suitable for Data Scientists

- 1. Resource Estimation
 - Distributed environment resources don't map 1:1 to local environments
- 2. **Debugging**
 - Debugging in distributed systems quickly becomes a complex task
- 3. Models are rarely trained on Spark Dataframes
 - Modeling Frameworks are often not distributed tools
- 4. Wrapping SQL in Python functions is <u>not pythonic</u>
 - At serving time there is often no Spark context available


```
window_len = "4h"
                                                               cc group = trans df[["cc num", "amount", "datetime"]] \
                                                                   .groupby("cc_num").rolling(window_len, on="datetime")
                                                               # Compute aggregations
                                                               df_4h_count = pd.DataFrame(cc_group.mean())
                                                               df 4h count.columns = ["trans freg", "datetime"]
Feature engineering
                                                               df_4h_count = df_4h_count.reset_index(level=["cc_num"])
                                                               df_4h_count = df_4h_count.drop(columns=["cc_num", "datetime"])
                                                               df 4h count = df 4h count.sort index()
                                                               window_aggs_df = window_aggs_df.merge(df_4h_count,left_index=True, right_index=True)
                                                               # Initialize metadata of feature group
                                                               window_aggs_fg = fs.get_or_create_feature_group(
                                                                   name="transactions 4h aggs fraud batch fg",
                                                                   version=1,
Initialize Feature Group metadata
                                                                   description="Aggregate transaction data over 4hwindows.",
                                                                   primary key=["cc num"],
                                                                   event_time="datetime"
                                                               # Write Dataframe to the feature group
Write feature data
                                                               window_aggs_fg.insert(window_aggs_df)
```


Where does Great Expectations fit in?

Validate data before it is made available to data scientists



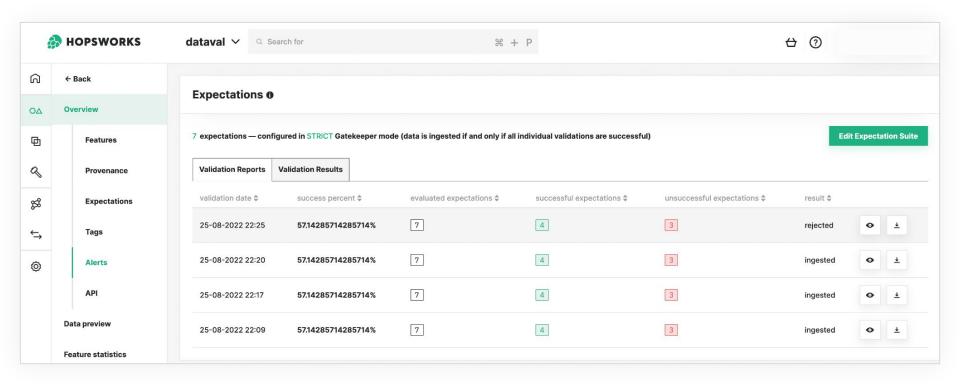
Where does Great Expectations fit

Validate data before it is made available to data scientists

Pandas Dataframe

Where does Great Expectations fit

Validate data before it is made available to data scientists



Python, Pandas and Feature Views Data Access Problem

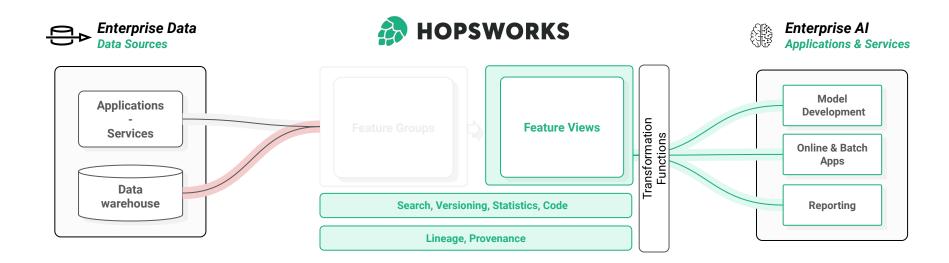
Feature Reusability requires Views - Feature Views

Why Data Scientists want Python-centric APIs

- 1. **Models are trained with Python libraries** *DSLs are use case specific*
- Training frameworks might require file formats Scikit-learn & Pandas, Tensorflow & Tfrecord, Pytorch & Numpy
- 3. **Point-in-time joins are hard** Writing PIT joins in SQL, Spark or Python is error prone
- 4. **Transformations happen at feature retrieval time** Reusing a feature often means limiting the set of entities a model is trained on, which again leads to different statistics
- **5. Spark not available at feature retrieval time** At serving time there is often no Spark context available

Feature Views for training data, batch scoring and low latency serving

The API for Data Scientists



Feature Reusability with Feature Views

Pandas like join making PIT joins transparent

```
# Select feature groups
                                                                trans_fg = fs.get_feature_group("transactions_fraud_batch_fg",
                                                                    version=1)
Get Feature Group metadata
                                                                window aggs fg = fs.get feature group("transactions 4h aggs fraud batch fg",
                                                             5
                                                                    version=1)
                                                                # Join the feature gorups and select the features
                                                                ds_query = trans_fg.select(["fraud_label", "category", "amount",
Select features
                                                                        "age at transaction", "days until card expires", "loc delta"]) \
                                                                     .join(window aggs fg.select except(["cc num"]))
                                                                 feature_view = fs.create_feature_view(
                                                            13
                                                                    name="transactions_view",
                                                                    query=ds_query,
                                                                     labels=["fraud_label"],
Create Feature View along with
                                                                    transformation_functions={
transformations
                                                                        "category": label encoder,
                                                                        "amount": min_max_scaler,
                                                                        "days_until_card_expires": min_max_scaler,
```


Reading from the Feature View

One API to rule them all

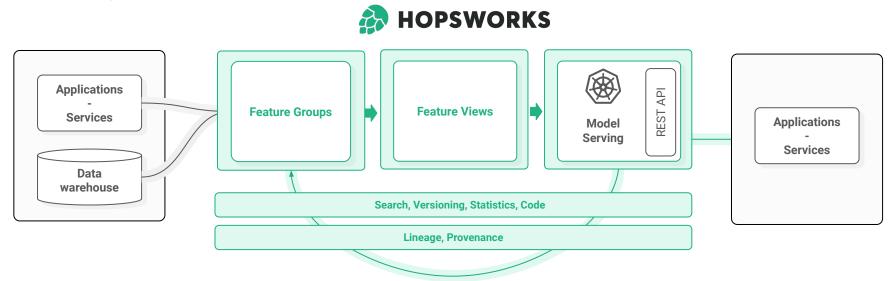
```
# Create training data in a specific file format
                                                          td version, td job = feature view.create train validation test split(
                                                             description = 'transactions fraud batch training dataset',
                                                             data format = 'csv',
Training Data as files
                                                             validation size = 0.2,
                                                             test_size = 0.1
Training Data in-memory
                                                      9 # Retrieve previoulsy materialised training data
                                                     10 X_train, y_train, X_val, y_val, X_test, y_test = feature_view.get_train_validation_test_split(1)
as Pandas Dataframe
                                                         # Generate batches of data from a certain time range
                                                         start_time = int(float(datetime.strptime("2022-01-03 00:00:01",
                                                             date_format).timestamp()) * 1000)
New batches of data
                                                          end_time = int(float(datetime.strptime("2022-03-31 23:59:59",
                                                             date_format).timestamp()) * 1000)
for scoring
                                                         march_transactions = feature_view.get_batch_data(
                                                             start_time = start_time, end_time = end_time)
                                                          # Initialize with training data version for transformations and get single feature vectors
                                                          feature_view.init_serving(1)
Real-time feature lookup
                                                          feature array = feature view.get feature vector(
                                                             {"primary_key": 1})
```

Endboss: Prediction Service

Integrating Data APIs with Model APIs

Building Prediction Services with KServe Integration

Closing the loop



Predictions and Features

Tying it all together

The predictor interface

Establish connection to Feature Store

Initialize Feature View

Loading the model from a model registry

Implementing the predict interface using the Feature View

```
import numpy as np
     import hsfs
     import joblib
     class Predict(object):
         def __init__(self):
             """ Initializes the serving state, reads a trained model"""
             # get feature store handle
             fs_conn = hsfs.connection()
12
             self.fs = fs_conn.get_feature_store()
             # get feature views
             self.fv = self.fs.get_feature_view("transactions_view", 1)
16
             # initialise serving
             self.fv.init_serving(1)
             # load the trained model
21
22
23
             self.model = joblib.load(
                 os.environ["ARTIFACT_FILES_PATH"] + "/fraud.model.pkl")
             print("Initialization Complete")
24
         def predict(self, inputs):
             """ Serves a prediction request usign a trained model"""
             # Numpy Arrays are not JSON serializable
             return self.model.predict(
29
30
                 np.asarray(
                     self.fv.get_feature_vector({"cc_num": inputs[0]}))
                         .reshape(1, -1)
                 ).tolist()
```

app.hopsworks.ai

Try it out! Serverless and free!

