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Hamilton is Open Source Code

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples
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https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples


What is Hamilton?



What is Hamilton?

A declarative dataflow paradigm.
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https://en.wikipedia.org/wiki/Dataflow


Hamilton: 
Code → Dataflow → Object
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Code:
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def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

User
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(e.g. Dataframe, 
ML Model): 
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https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916
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def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
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Python 
Modules

DAG:

Object(s) 
(e.g. Dataframe, 
ML Model): 

“Driver” Code

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


Hamilton Paradigm: declaring a dataflow

Instead of:

You declare:

+  some driver code (not shown)
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df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column



Instead of:

You declare:
Inputs == Function Arguments

Hamilton Paradigm: declaring a dataflow
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df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

Outputs == Function Name



Full Hello World
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# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd']) 
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:
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Why was Hamilton created?



Backstory: Time-series Forecasting w/FED
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What 
Hamilton 

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536


Backstory: TS -> Dataframe creation
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Columns are 
functions of 

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985


Backstory: TS -> Dataframe creation

19

g(f(A,B), …) 

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787


Backstory: Example transform code

20

df = loader.load_actuals(dates) # e.g. spend, signups



Backstory: Example transform code
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])



Backstory: Example transform code
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)



Backstory: Example transform code
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])



Backstory: Example transform code
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")



Backstory: Example transform code
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team 
😬

NOT CLEAN & ROBUST!



Problem: unit testing & integration testing 👎

26

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team 
😬

NOT CLEAN & ROBUST!



Problem: code readability & documentation 🧐
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

?

Now scale this code to 1000+ columns & a growing team 
😬

NOT CLEAN & ROBUST!



Problem: difficulty in tracing lineage 🤯
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team 
😬

NOT CLEAN & ROBUST!



Problem: code reuse and duplication
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df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
   df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

✂📋

Now scale this code to 1000+ columns & a growing team 
😬

NOT CLEAN & ROBUST!



Hamilton @ Stitch Fix



Hamilton @ Stitch Fix

● Running in production for 2.5+ years
● FED team manages 4000+ feature definitions

○ All feature definitions are:
■ Unit testable
■ Documentation friendly
■ Centrally curated, stored, and versioned in git.

● Data Science teams ❤ it:
○ Best adoption from active time-series forecasting teams

■ Most willing to pay migration cost.
○ Enabled a monthly feature update & model fitting task to be completed 4x faster
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Overview: 
Feature/data Engineering 

with Hamilton



Hamilton + Feature/data Engineering: Overview

         featurization training     prediction

● Can model this all in Hamilton (if you wanted to)

● We’ll just focus on featurization
○ FYI: Hamilton works for any object type.

■ Here we’ll assume pandas for simplicity.
○ Batch: use within an orchestration system (e.g. Airflow), Jupyter notebook, in front 

of Feast, etc.
○ Online: embed within python streaming / python web serivce

33

Load 
Data

Transform 
into 

Features

Fit 
Model(s)

Use 
Model(s) 



Data loading & 
Feature code:
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def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

Via 
Driver:

Feature 
Dataframe:

Modeling featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

35

Data 
Loaders

Feature
Functions

Drivers



Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization
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Data 
Loaders

Drivers

Feature
Functions



General Problems with
 Feature Engineering



General Problems with Feature Engineering

}

}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

38

Hamilton helps here!

Hamilton has 
integrations here, e.g. 
Ray & Dask!



General Problems with Feature Engineering
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}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation
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Hamilton helps here!

Hamilton has 
integrations here, e.g. 
Ray & Dask!

Focus for rest of talk



 Making Feature Engineering 
Clean & Robust



Clean & Robust Feature Engineering

41

Highly coupled code Decouples “functions” from use (driver code).

Issue Hamilton



Clean & Robust Feature Engineering

42

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Issue Hamilton



Clean & Robust Feature Engineering
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Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks.

Issue Hamilton



Hamilton Functions:

Clean & Robust Feature Engineering
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# client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
                                   height_std_dev: pd.Series) -> pd.Series:
   """Zero mean unit variance value of height"""
   return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & drivers
● Central feature definition store ✅ naming, curation, versioning
● Data quality ✅ runtime checks



Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Clean & Robust Feature Engineering

45

Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts.
> Code base ends up well structured.

Driver script 2

Driver script 3



Summary



Summary: Hamilton - 
Clean & Robust Feature Engineering
● Hamilton is a declarative paradigm to describe data/feature 

transformations 
○ Embeddable anywhere that runs python.

● It grew out of a need to tame a feature code base
○ it’ll make yours better too!

● Hamilton paradigm enables one to:

Write clean & robust feature transforms
via software engineering best practices
without you thinking about it!

Anyone who is doing feature engineering in python should know about it!
47



Give Hamilton a Try! 
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack 
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg) 
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https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg


Thank you.
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton


