
Organized by

Hamilton: an open source,
declarative, micro-framework for
clean & robust feature transform
code in Python
Stefan Krawczyk, Ex-Mgr. Model Lifecycle @ Stitch Fix

Hamilton is Open Source Code

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

2

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative dataflow paradigm.

4

https://en.wikipedia.org/wiki/Dataflow

Hamilton:
Code → Dataflow → Object

Hamilton:
Code → Dataflow → Object

Code:

6

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

Hamilton:
Code → Dataflow → Object

Code:

7

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

DAG: Hamilton

Hamilton:
Code → Dataflow → Object

Code:

8

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

DAG:

Object(s)
(e.g. Dataframe,
ML Model):

Hamilton

User

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Hamilton:
Code → Dataflow → Object

Code:

9

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Python
Modules

DAG:

Object(s)
(e.g. Dataframe,
ML Model):

“Driver” Code

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Hamilton Paradigm: declaring a dataflow

Instead of:

You declare:

+ some driver code (not shown)
10

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Instead of:

You declare:
Inputs == Function Arguments

Hamilton Paradigm: declaring a dataflow

11

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World

12

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

Full Hello World

13

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

Full Hello World

14

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

c

d

a b

Full Hello World

15

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

c

d

a b

Why was Hamilton created?

Backstory: Time-series Forecasting w/FED

17

What
Hamilton

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

18

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

19

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: Example transform code

20

df = loader.load_actuals(dates) # e.g. spend, signups

Backstory: Example transform code

21

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])

Backstory: Example transform code

22

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)

Backstory: Example transform code

23

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])

Backstory: Example transform code

24

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Backstory: Example transform code

25

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

NOT CLEAN & ROBUST!

Problem: unit testing & integration testing 👎

26

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

NOT CLEAN & ROBUST!

Problem: code readability & documentation 🧐

27

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

?

Now scale this code to 1000+ columns & a growing team
😬

NOT CLEAN & ROBUST!

Problem: difficulty in tracing lineage 🤯

28

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

NOT CLEAN & ROBUST!

Problem: code reuse and duplication

29

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

✂📋

Now scale this code to 1000+ columns & a growing team
😬

NOT CLEAN & ROBUST!

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

● Running in production for 2.5+ years
● FED team manages 4000+ feature definitions

○ All feature definitions are:
■ Unit testable
■ Documentation friendly
■ Centrally curated, stored, and versioned in git.

● Data Science teams ❤ it:
○ Best adoption from active time-series forecasting teams

■ Most willing to pay migration cost.
○ Enabled a monthly feature update & model fitting task to be completed 4x faster

31

Overview:
Feature/data Engineering

with Hamilton

Hamilton + Feature/data Engineering: Overview

 featurization training prediction

● Can model this all in Hamilton (if you wanted to)

● We’ll just focus on featurization
○ FYI: Hamilton works for any object type.

■ Here we’ll assume pandas for simplicity.
○ Batch: use within an orchestration system (e.g. Airflow), Jupyter notebook, in front

of Feast, etc.
○ Online: embed within python streaming / python web serivce

33

Load
Data

Transform
into

Features

Fit
Model(s)

Use
Model(s)

Data loading &
Feature code:

34

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Via
Driver:

Feature
Dataframe:

Modeling featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

35

Data
Loaders

Feature
Functions

Drivers

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

36

Data
Loaders

Drivers

Feature
Functions

General Problems with
 Feature Engineering

General Problems with Feature Engineering

}

}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

38

Hamilton helps here!

Hamilton has
integrations here, e.g.
Ray & Dask!

General Problems with Feature Engineering

}

}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

39

Hamilton helps here!

Hamilton has
integrations here, e.g.
Ray & Dask!

Focus for rest of talk

 Making Feature Engineering
Clean & Robust

Clean & Robust Feature Engineering

41

Highly coupled code Decouples “functions” from use (driver code).

Issue Hamilton

Clean & Robust Feature Engineering

42

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Issue Hamilton

Clean & Robust Feature Engineering

43

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks.

Issue Hamilton

Hamilton Functions:

Clean & Robust Feature Engineering

44

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & drivers
● Central feature definition store ✅ naming, curation, versioning
● Data quality ✅ runtime checks

Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Clean & Robust Feature Engineering

45

Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts.
> Code base ends up well structured.

Driver script 2

Driver script 3

Summary

Summary: Hamilton -
Clean & Robust Feature Engineering
● Hamilton is a declarative paradigm to describe data/feature

transformations
○ Embeddable anywhere that runs python.

● It grew out of a need to tame a feature code base
○ it’ll make yours better too!

● Hamilton paradigm enables one to:

Write clean & robust feature transforms
via software engineering best practices
without you thinking about it!

Anyone who is doing feature engineering in python should know about it!
47

Give Hamilton a Try!
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg)

48

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton

