Hamilton: an open source, declarative, micro-framework for clean & robust feature transform code in Python

Stefan Krawczyk, Ex-Mgr. Model Lifecycle @ Stitch Fix

Hamilton is Open Source Code

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

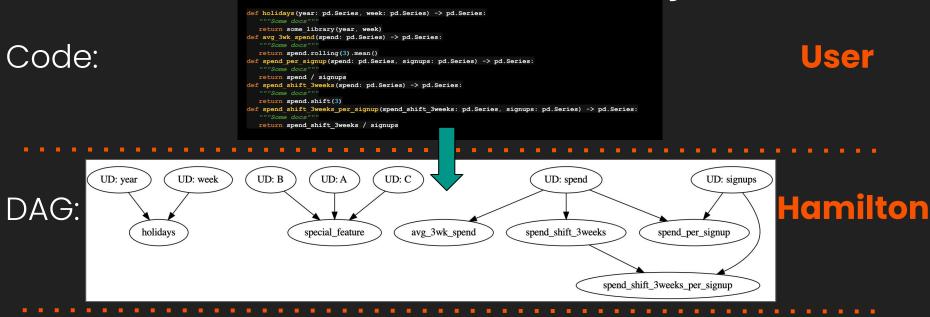
A declarative <u>dataflow</u> paradigm.

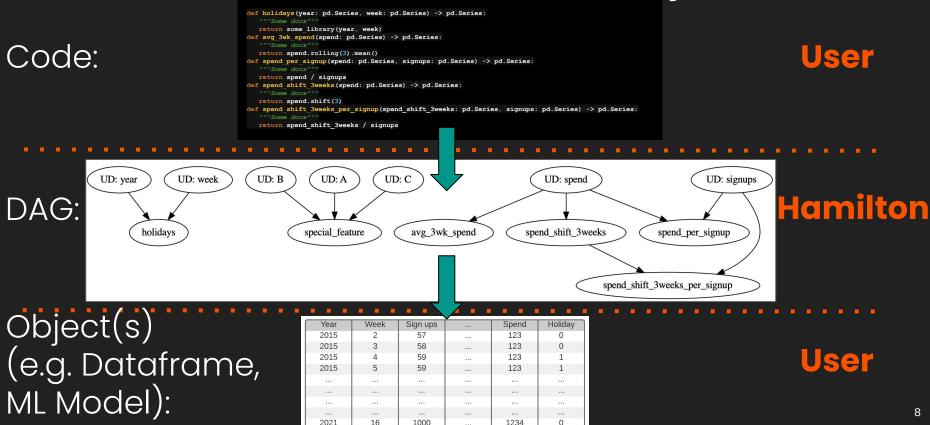
$\textbf{Code} \rightarrow \textbf{Dataflow} \rightarrow \textbf{Object}$

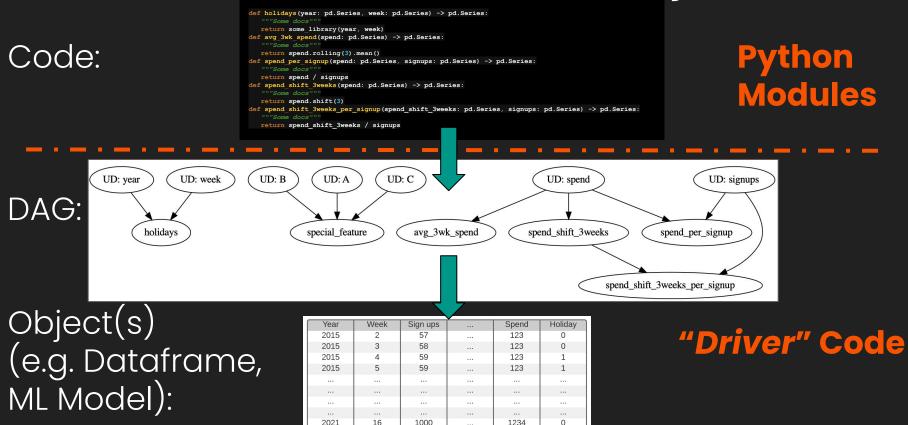
Code:

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.split(3)
def spend / signups
def spend shift 3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend shift 3weeks / signups

User







Hamilton Paradigm: declaring a dataflow

Instead of:

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

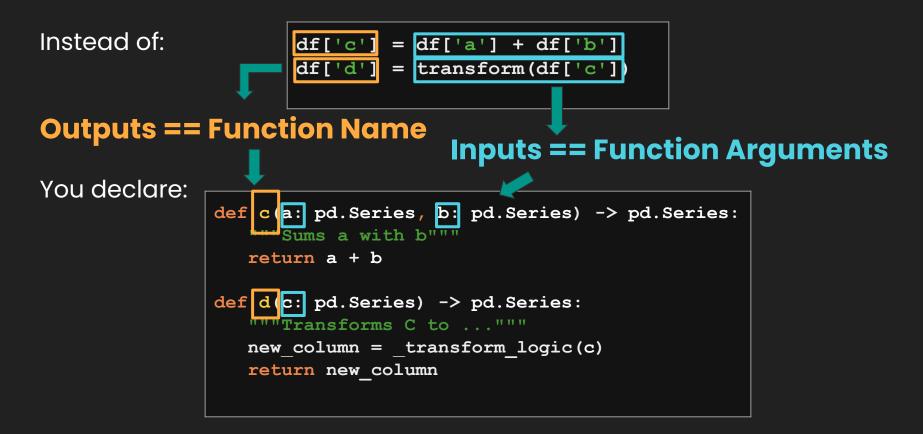
You declare:

```
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

+ some driver code (not shown)

Hamilton Paradigm: declaring a dataflow



Functions:

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b
def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

```
# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```

Functions:

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

```
# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```

Functions:

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b
def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

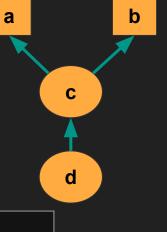
a b c d

```
# run.py
from hamilton import driver
import feature logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```

Functions:

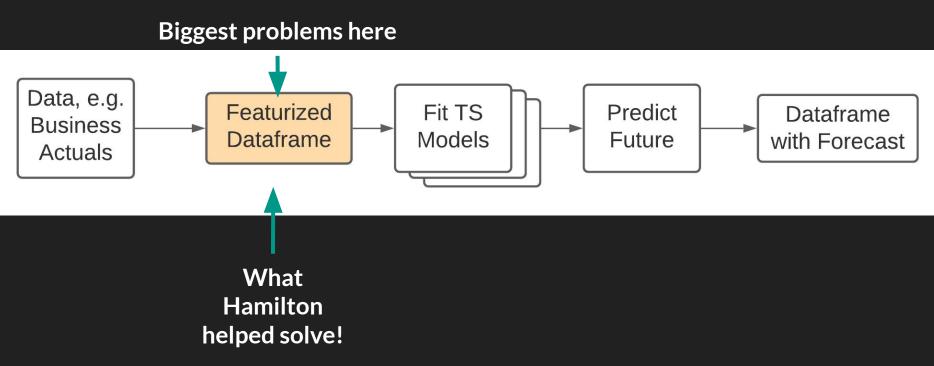
```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b
def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

```
# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```



Why was Hamilton created?

Backstory: Time-series Forecasting w/FED



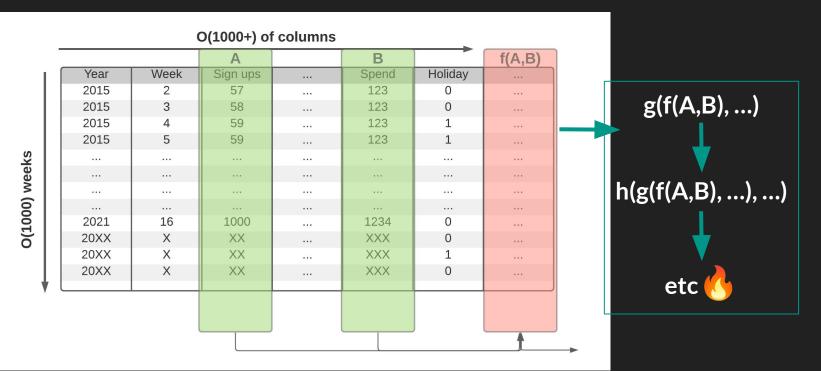
Backstory: TS -> Dataframe creation

Year	Week	Sign ups		Spend	Holiday	
2015			•••			
	2	57		123	0	
2015	3	58		123	0	
2015	4	59		123	1	
2015	5	59		123	1	
2021	16	1000		1234	0	
20XX	Х	XX		XXX	0	
20XX	Х	XX		XXX	1	
20XX	Х	XX		XXX	0	

O(1000) weeks

Columns are functions of other columns

Backstory: TS -> Dataframe creation



19

df = loader.load_actuals(dates) # e.g. spend, signups

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
```

```
df['holidays'] = is_holiday(df['year'], df['week'])
```

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
```

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df[' week'])
```

else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is uk holiday(df['year'], df[' week'])
```

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
```

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

<u>Problem</u>: unit testing & integration testing

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week']) df['avg_3wk_spend'] = df['spend'].rolling(3).mean() df['acquisition_cost'] = df['spend'] / df['signups'] df['spend_shift_3weeks'] = df['spend'].shift(3) df['special_feature1'] = compute_bespoke_feature(df) df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B']) save_df(df, "some_location")

Problem: code readability & documentation 🧐

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week']) df['avg_3wk_spend'] = df['spend'].rolling(3).mean() df['acquisition_cost'] = df['spend'] / df['signups'] df['spend_shift_3weeks'] = df['spend'].shift(3) df['special_feature1'] = compute_bespoke_feature(df) df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B']) save_df(df, "some_location")

<u>Problem</u>: difficulty in tracing lineage 🤯

```
df = loader.load actuals(dates) # e.g. spend, signups
  if config['region'] == 'UK':
     df['holidays'] = is uk holiday(df['year'], df[' week'])
  else:
     df['holidays'] = is holiday(df['year'], df['week'])
  df['avg 3wk spend'] = df['spend'].rolling(3).mean()
->df['acquisition cost'] = df['spend'] / df['signups']
  df['spend shift 3weeks'] = df['spend'].shift(3)
  df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
  save df(df, "some location")
```

Problem: code reuse and duplication

df = loader.load actuals(dates) # e.g. spend, signups if config['region'] == 'UK': df['holidays'] = is uk holiday(df['year'], df[' week']) else: df['holidays'] = is holiday(df['year'], df['week']) df['avg 3wk spend'] = df['spend'].rolling(3).mean() df['acquisition_cost'] = df['spend'] / df['signups'] 🗲 df['spend shift 3weeks'] = df['spend'].shift(3) df['special feature1'] = compute bespoke feature(df) df['spend b'] = multiply columns(df['acquisition cost'], df['B']) save df(df, "some location")

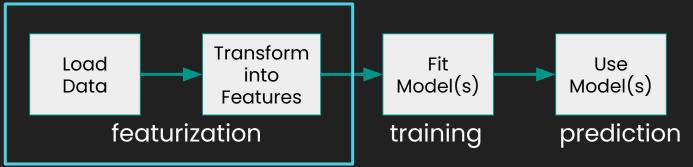
Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

- Running in production for 2.5+ years
- FED team manages 4000+ feature definitions
 - All feature definitions are:
 - Unit testable
 - Documentation friendly
 - Centrally curated, stored, and versioned in git.
- Data Science teams 🤎 it:
 - Best adoption from active time-series forecasting teams
 - Most willing to pay migration cost.
 - Enabled a monthly feature update & model fitting task to be completed 4x faster

Overview: Feature/data Engineering with Hamilton

Hamilton + Feature/data Engineering: Overview



- Can model this all in Hamilton (if you wanted to)
- We'll just focus on featurization
 - FYI: Hamilton works for any object type.
 - Here we'll assume pandas for simplicity.
 - **Batch**: use within an orchestration system (e.g. Airflow), Jupyter notebook, in front of Feast, etc.
 - **Online**: embed within python streaming / python web serivce

Modeling featurization

"""Some docs""

return some library(year, week)

def avg 3wk spend(spend: pd.Series) -> pd.Series:

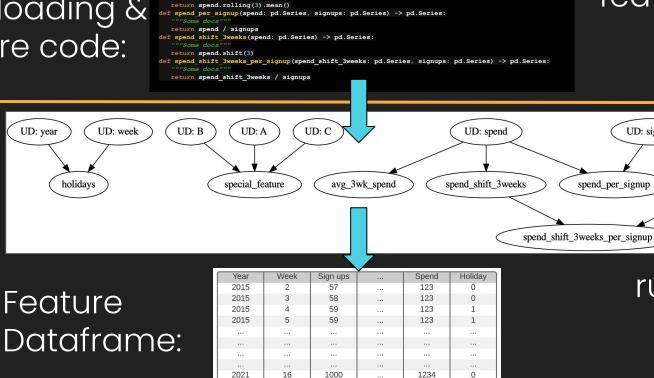
Data loading & Feature code:

UD: year

holidays

Via

Driver:



def holidays(vear: pd.Series, week: pd.Series) -> pd.Series:

features.py

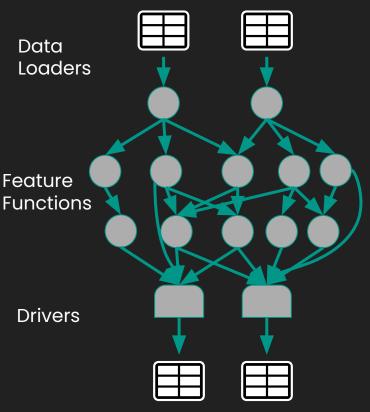
UD: signups

run.py

Modeling featurization

Code that needs to be written:

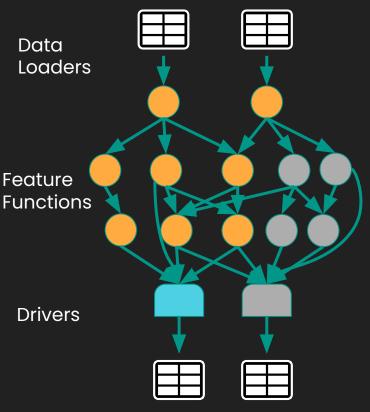
- 1. Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.



Modeling featurization

Code that needs to be written:

- 1. Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.



General Problems with Feature Engineering

General Problems with Feature Engineering

> Human/Team:

- Highly coupled code
- In ability to reuse/understand work
- Broken/unhealthy production pipelines

> Machines:

- Data is too big to fit in memory
- Cannot easily parallelize computation

Hamilton helps here!

Hamilton has integrations here, e.g. Ray & Dask!

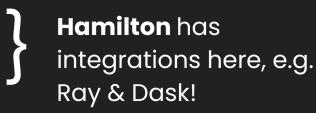
General Problems with Feature Engineering

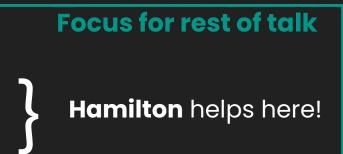
> Human/Team:

- Highly coupled code
- In ability to reuse/understand work
- Broken/unhealthy production pipelines

> Machines:

- Data is too big to fit in memory
- Cannot easily parallelize computation





Making Feature Engineering Clean & Robust

lssue	<u>Hamilton</u>
Highly coupled code	Decouples "functions" from use (driver code).

<u>Issue</u>	<u>Hamilton</u>
Highly coupled code	Decouples "functions" from use (driver code).
In ability to reuse/understand work	Functions are curated into modules.
	Everything is unit testable.
	Documentation is natural.
	Forced to align on naming.

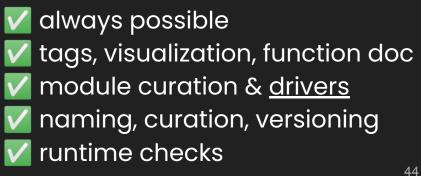
<u>lssue</u>	<u>Hamilton</u>
Highly coupled code	Decouples "functions" from use (driver code).
In ability to reuse/understand work	Functions are curated into modules.
	Everything is unit testable.
	Documentation is natural.
	Forced to align on naming.
Broken/unhealthy production pipelines	Debugging is straightforward.
	Easy to version features via git/packaging.
	Runtime data quality checks. 43

Hamilton Functions:

```
# client features.py
@tag(owner='Data-Science', pii='False')
@check output(data type=np.float64, range=(-5.0, 5.0), allow nans=False)
def height zero mean unit variance (height zero mean: pd.Series,
                                   height std dev: pd.Series) -> pd.Series:
   """Zero mean unit variance value of height"""
   return height zero mean / height std dev
```

Hamilton Features:

- Unit testing igodol
- Documentation
- Modularity/reuse \bullet
- Central feature definition store
- Data quality



Code base implications:

- 1. Functions are always in modules
- 2. Driver script, i.e execution script, is decoupled from functions.

- > Code reuse from day one!
- > Low maintenance to support many driver scripts.
- > Code base ends up well structured.

Summary

Summary: Hamilton -Clean & Robust Feature Engineering

- Hamilton is a declarative paradigm to describe data/feature transformations
 - Embeddable anywhere that runs python.
- It grew out of a need to tame a feature code base
 - it'll make yours better too!
- Hamilton paradigm enables one to:

Write clean & robust feature transforms via software engineering best practices without you thinking about it!

Anyone who is doing feature engineering in python should know about it!

Give Hamilton a Try! We'd love your Feedback

> pip install sf-hamilton

on <u>github</u> (https://github.com/stitchfix/hamilton)

🗹 create & vote on issues on github

join us on on <u>Slack</u>

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you. Questions? https://twitter.com/stefkrawczyk https://www.linkedin.com/in/skrawczyk/ https://github.com/stitchfix/hamilton