Hamilton: an open source,
declarative, micro-framework for
clean & robust feature transform
code in Python

Stefan Krawczyk, Ex-Mgr. Model Lifecycle @ Stitch Fix

q FEATURE STORE
SUMMIT
k.qwl. 2022 Organized by 423 HOPSWORKS

Hamilton is Open Source Code

> pip install sf-hamilton
Get started in <15 minutes!
Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Haomilton?

A declarative dataflow paradigm.

https://en.wikipedia.org/wiki/Dataflow

Hamilton:
Code — Dataflow — Object

Hamilton:
Code — Dataflow — Object

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

. spend. rolling (3) .mean ()
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
L]

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

spend. shift (3)
spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

Hamilton:
Code — Dataflow — Object

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

. spend. rolling (3) .mean ()
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
L]

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

spend. shift (3)
spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

UD: signups

avg_3wk_spend spend_shift_3weeks spend_per_signup

spend_shift_3weeks_per_signup

Hamilton:
Code — Dataflow — Object

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

. spend. rolling (3) .mean ()
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
L]

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

spend. shift (3)
spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

UD: signups

spend_shift_3weeks spend_per_signup
spend_shift_3weeks_per_signup

Object(s)

58

(e.g. Dataframe, [EEEEE
ML Model):

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Hamilton:
Code — Dataflow — Object

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

. spend. rolling (3) .mean ()
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
L]

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

spend. shift (3)
spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

spend_shift_3weeks spend_per_signup
spend_shift_3weeks_per_signup

57

Object(s)

58

(e.g. Dataframe, [EHEEEE
ML Model):

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Hamilton Paradigm: declaring a dataflow

Instead of: df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
You declare:

return a + b

def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

+ some driver code (not shown)

Hamilton Paradigm: declaring a dataflow

Instead of: df['c'] =[@f['a'] + df['Db']
|df[’d’]| = |transform(df['c']

Outputs == Function Name)
Inputs == Function Arguments

You declare:
def _c_{a pd.Series, El pd.Series) -> pd.Series:

return a + b

def EE pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

Full Hello Worid

) # feature logic.py
Functions: def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b
def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

“Driver” - this actually says what and when to execute:

run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...}, feature logic)
df result = dr.execute(['c', 'd'])

print (df result)

Full Hello Worid

) # feature logic.py
Functions:

return a + b

return new column

def c(a: pd.Series, b:

pd.Series) -> pd.Series:

def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)

“Driver” - this actually says what and when to execute:

run.py

from hamilton import driver
import feature logic

dr = driver.DrI&er({'a':
df result = dr.execute(['c’',
print (df result)

., 'b': ...}, feature logic)

ldl])

(K

Full Hello World

) # feature logic.py

Functions: def c(a: pd.Series, b: pd.Series) -> pd.Series:
wivw Sums a With b” wi

return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to e
new column = transform logic(c)
return new_column

“Driver” - this actually says what and when to execute:

run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...}, feature logic)

df result = dr.execute(['c', 'd'])
print (df_result)

Full Hello World

) # feature logic.py

Functions: def c(a: pd.Series, b: pd.Series) -> pd.Series:
wivw Sums a With b” wi

return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to e
new column = transform logic(c)
return new_column

“Driver” - this actually says what and when to execute:

run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...}, feature logic)
df result = dr.execute(['c', 'd'])
print(drf_result)

Why was Hamilton created?

Backstory: Time-series Forecasting w/FED

Biggest problems here

[éitséllngsgs Featurized Fit TS Predict _| Dataframe
Aptuzls Dataframe Models Future with Forecast

What
Hamilton
helped solve!

17

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

0(1000+) of columns

Week Sign ups Holiday
2 57 0
8 58 0
4 59 1
5 59 il

Columns are
functions of
other columns

1000
XX
XX

)
X
)
o
2
—_—
)
=]
=]
o
N
@)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

0(1000+) of columns
A B
Week Sign ups Spend Holiday
2 57 123 0 .
58 123 0 i)
59 123 1
59 123 1

...)’ ...)
1000 1234
XX XXX

XX XXX
XX XXX

)
X
[
o
s
_—
)
=]
S
o
N
o

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: Example transform code

df = loader.load actuals(dates) # e.g. spend, signups

20

Backstory: Example transform code

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])

Backstory: Example transform code

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)

22

Backstory: Example transform code

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)
df['special featurel'] = compute bespoke feature (df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])

23

Backstory: Example transform code

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)
df['special featurel'] = compute bespoke feature (df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df (df, "some location")

24

Backstory: Example transform code

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)
df['special featurel'] = compute bespoke feature (df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df (df, "some location")

25

Problem: unit testing & integration testing §

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)
df['special featurel'] = compute bespoke feature (df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df (df, "some location")

26

Problem: code readability & documentation &

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean() ’?
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)
df['special featurel'] = compute bespoke feature (df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df (df, "some location")

27

Problem: difficulty in tracing lineage &

df = loader.load actuals(dates) # e.g. spend, signups

if config['region'] == 'UK':
df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3) .mean()
—>df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift (3)
df['special featurel'] = compute bespoke feature (df)
—»-df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df (df, "some location")

28

Problem: code reuse and duplication

df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])

df['avg 3wk spend'] = af['spend'].rolling(B).mean()
df['acquisition cost'] = df['spend'] / df['signups'] 8><:
df['spend shift 3weeks'] = df['spend'].shift(3)

df['special featurel'] = compute bespoke feature (df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df (df, "some location")

29

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

e Running in production for 2.5+ years

e FED team manages 4000+ feature definitions
o All feature definitions are:
m Unit testable
m Documentation friendly
m Centrally curated, stored, and versioned in git.

e Data Science teams O it;

o Best adoption from active time-series forecasting teams
m Most willing to pay migration cost.
o Enabled a monthly feature update & model fitting task to be completed 4x faster

31

Overview:
Feature/data Engineering
with Hamilton

Hamilton + Feature/data Engineering: Overview

Transform Fit Use

into
Features Model(s) Model(s)

featurization training prediction

Can model this all in Hamilton (it you wanted to)
We’'ll just focus on featurization

(@)

FYI: Hamilton works for any object type.
m Here we'll assume pandas for simplicity.
Batch: use within an orchestration system (e.g. Airflow), Jupyter notebook, in front
of Feast, etc.
Online: embed within python streaming / python web serivce

KK

Modeling featurization

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)

avg 3wk spend(spend: pd.Series) -> pd.Series: f t
L]
spend. rolling (3) .mean () e(] u reS- py
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

Feature code:

spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

@ @l k UD: signups
Vi
. avg_3wk_spend spend_shift_3weeks spend_per_signup
Driver:
spend_shift_3weeks_per_signup
Sign ups

Feature run.py
Dataframe;

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Modeling featurization

. T T
Code that needs to be written: Data —— ——
. Loaders
1. Functions to load data
a. normalize/create common index to join on . .

2. Feature functions

a. Optional: model functions. Feature ' ' ' "

3. Drivers materialize data Functions

a. DAG is walked for only what's needed. ‘ . ‘ . ‘
Drivers - -

Modeling featurization

. T T
Code that needs to be written: Data —— ——
. Loaders
1. Functions to load data
a. normalize/create common index to join on . .

2. Feature functions

a. Optional: model functions. Feature ‘ ' ’ "

3. Drivers materialize data Functions

a. DAG is walked for only what's needed. ‘ . ‘ . ‘
Drivers - -

General Problems with
Feature Engineering

General Problems with Feature Engineering

> Human/Team:

e Highly coupled code

e In ability to reuse/understand work } Hamilton helps here!
e Broken/unhealthy production pipelines
> Machines:

e Datais too big to fit in memory Hamilton has

e Cannot easily parallelize computation integrations here, e.g.

Ray & Dask!

38

General Problems with Feature Engineering

> Human/Team:

e Highly coupled code

e In ability to reuse/understand work } Hamilton helps here!
e Broken/unhealthy production pipelines
> Machines:

e Datais too big to fit in memory Hamilton has

e Cannot easily parallelize computation integrations here, e.g.

Ray & Dask!

39

Making Feature Engineering
Clean & Robust

Clean & Robust Feature Engineering

Issue

Hamilton

Highly coupled code

Decouples “functions” from use (driver code).

41

Clean & Robust Feature Engineering

Issue Hamilton
High|y coupled code Decouples “functions” from use (driver code).
In ability to reuse/understcmd work Functions are curated into modules.

Everything is unit testable.
Documentation is natural.

Forced to align on naming.

42

Clean & Robust Feature Engineering

Issue Hamilton
High|y coupled code Decouples “functions” from use (driver code).
In ability to reuse/understqnd work Functions are curated into modules.

Everything is unit testable.
Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines Debugging is straightforward.

Easy to version features via git/packaging.

43

Runtime data quality checks.

Clean & Robust Feature Engineering

Hamilton Functions:

client features.py

@Qtag(='Data-Science’, ='False')

@check output (=np.floaté4, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: pd.Series) -> pd.Series:

return height zero mean / height std dev

Hamilton Features:

e Unit testing W always possible

e Documentation W tags, visualization, function doc
e Modularity/reuse ¥ module curation & drivers

e Central feature definition store ¥ naming, curation, versioning

e Data quality W runtime checks

44

Clean & Robust Feature Engineering

Code base implications:

. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

> Code reuse from day one!

> Low maintenance to support many driver scripts.
> Code base ends up well structured.

45

summary

Summary: Hamilton -
Clean & Robust Feature Engineering

e Hamilton is a declarative paradigm to describe data/feature

transformations
o Embeddable anywhere that runs python.

e [t grew out of a need to tame a feature code base
o it'll make yours better too!

e Hamilton paradigm enables one to:

Write clean & robust feature transforms
via software engineering best practices
without you thinking about it!

Anyone who is doing feature engineering in python should know about it!

47

Give Hamilton a Try!
We'd love your Feedback

>pip install sf-hamilton
W on qithub (nhttps://github.com/stitchfix/hamilton)
V¥ create & vote on issues on github

£ join us on on Slack

(httos://ioin.slock.com/t/homilton—ooensource/shored invite/zt—]bis72osx—onTqH7q7QX1iquSbbdcq)

48

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

thub.com/stitchfix/hamilton

