Feature Engineering with Hamilton Write once / run everywhere

Elijah ben Izzy | Co-founder/CTO | DAGWORKS

TL;DR

I want to convince you that...

- 1. Writing *portable* feature engineering code is hard
- SOTA approaches aren't flexible/powerful enough
- 3. Hamilton can help you:
 - a. Write code to run in multiple contexts
 - b. Keep your code organized/clean
- 4. Hamilton is easy to get started with/easy to use!

The unifying layer for Data, ML, and LLM pipelines

Open Core!

>>> I'm not selling you anything in this talk! <<<

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton.readthedocs.io/

Try it out

https://www.tryhamilton.dev/

https://www.tryhamilton.dev

Hamilton

Wrangle Pandas codebases into shape.

Learn (5 mins)

() Github 890+ 🙀

- Write always unit testable code
- Add runtime data validation easily
- Produce readable and maintainable code
- Visualize lineage (click the run button to see)
- Run anywhere python runs: in airflow, jupyter, fastapi, etc...
- Skip the CS degree to use it

```
Try Hamilton right here in your browser 👇
   1 # Declare and link your transformations as functions....
   2 import pandas as pd
   3
   4- def a(input: pd.Series) -> pd.Series:
   5
          return input % 7
   6
   7 - def b(a: pd.Series) -> pd.Series:
   8
          return a * 2
   9
  10 - def c(a: pd.Series, b: pd.Series) -> pd.Series:
  11
          return a * 3 + b * 2
  12
  13 - def d(c: pd.Series) -> pd.Series:
          return c ** 3
  14
   1 # And run them!
   2 import functions
                                                                                                         Run me!
   3 from hamilton import driver
      dr = driver.Driver({}, functions)
   5 result = dr.execute(
         ['a', 'b', 'c', 'd'],
   6
         inputs={'input': pd.Series([1, 2, 3, 4, 5])}
   7
   8)
   9 print(result)
  10 dr.display_all_functions("graph.dot", {})
```


The Agenda

- The problem with feature engineering The solution: *Hamilton* Write once, run everywhere
 - **Batch**
 - Streaming

Additional benefits of Hamilton OS progress/updates

The Agenda

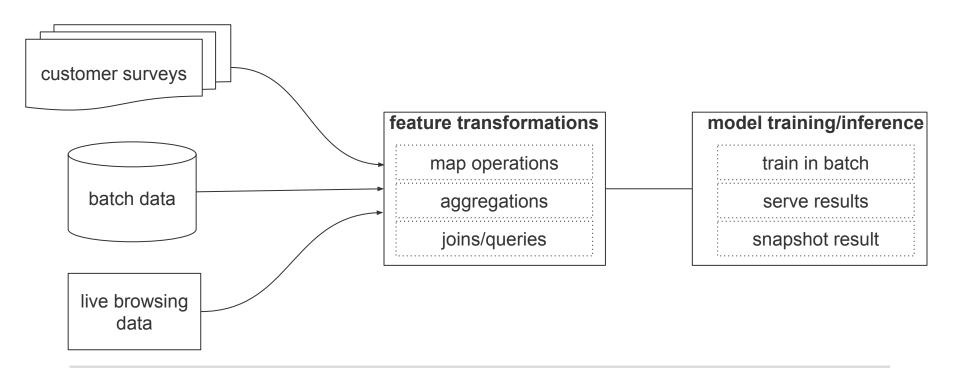
- The problem with feature engineering
- The solution: Hamilton
- Write once, run everywhere
 - **Batch**
 - **Streaming**
- Additional benefits of Hamilton OS progress/updates

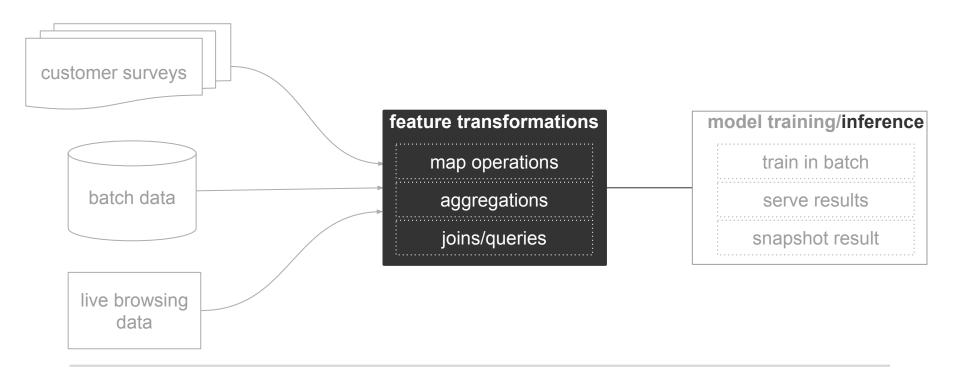
Common scenario (e-commerce)

- Customers fill out survey results
- Your model makes predictions
- Goal: get survey results to model

Caveats

- □ Survey results trickle in (streaming)
- Data comes in dumps nightly (batch)
- Multiple teams working together (features x infra x data)
- Features are derived from data (model = h(g(f(x)), ...)





Contexts

- Run on tables in your data warehouse for training data
- Run inside a streaming processor for *near-real-time*
- Transform browsing data live

Complications

- Ensuring the data is the same in all contexts:
 - How do you handle joins/alt data sources in non-batch mode?
 - How do you include aggregations in streaming mode?
- How do you track lineage, versions, etc... for different data sources?

Current approaches

Context-specific execution

- Cumbersome to manage
- 2 sets of tests
- 2 sets of versions
- Do they match?

Feature DSL to unify

- Tougher to grok
- Limited to specific operations
- Opinionated on agg, joins

Idea – can we write normal python code that is...

- DRY (don't repeat yourself)
- Applicable in all settings
- Fully customizable:
 - You decide joins
 - You decide aggregation approach
 - You write map fns however you want
 - Bring your own infrastructure
- Self-documenting + implies structure

The Agenda

The problem with feature engineering The solution: *Hamilton*

Write once, run everywhere

- **Batch**
- **Streaming**

Additional benefits of Hamilton OS progress/updates

Hamilton: the "a-ha" Moment

Idea What if every feature corresponded to exactly one python fn?

And... what if the way that function was written tells you everything you needed to know?

In Hamilton, the artifact (feature) is determined by the **name of the function**. The dependencies are determined by **the parameters**.

Old way vs Hamilton way:

Instead of*

```
df["c"] = df["a"] + df["b"]
df["d"] = transform(df["c"])
```

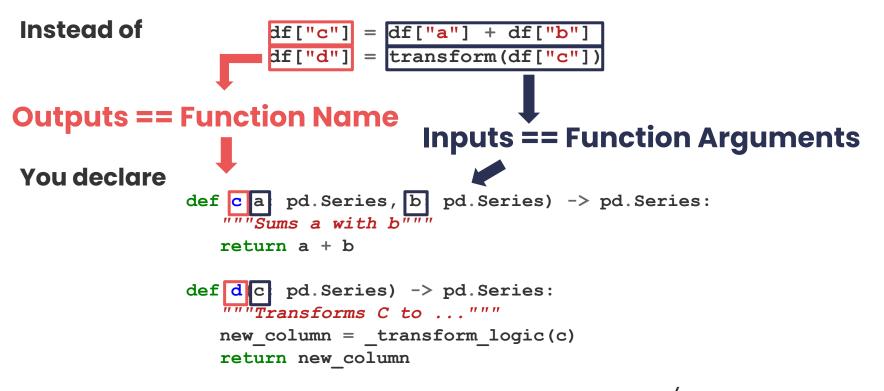
You declare

```
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

*Hamilton supports *all* python objects, not just dfs/series!

Old way vs Hamilton way:



*Hamilton supports *all* python objects, not just dfs/series!

Full hello world

Functions

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
```

```
return new_column
```

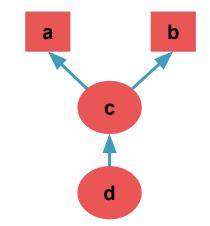
Driver says what/when to execute

```
# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```


Hamilton TL;DR

- 1. For each transform (=), you write a function(s)
- 2. Functions declare a DAG
- 3. Hamilton handles DAG execution

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Replaces c = a + b"""
    return a + b
```



```
def d(c: pd.Series) -> pd.Series:
    """Replaces d = transform(c)"""
    new_column = _transform_logic(c)
    return new_column
```


Hamilton: extensions

Q: Doesn't Hamilton make your code more verbose?

A: Yes, but that's not always a bad thing. When it is, we have decorators!

- @tag # attach metadata
- @extract_columns # one dataframe -> multiple series
- @check_output # data validation

• **Config.**when # conditional transforms

- @subdag # recursively utilize groups of nodes
- *Q...* # new ones all the time

The Agenda

The problem with feature engineering The solution: *Hamilton* Write once, run everywhere

- **Batch**
- Streaming
 Additional benefits of Hamilton
 OS progress/updates

Write once, run everywhere

One* feature per function

- Map operations single versus bulk operations are equivalent
- Aggregation* you choose (store, compute on the fly, update regularly, etc...)
- Joins* use query instead of join

*for aggregations/joins you reimplement just the parts you need to

Write once, run everywhere

Back to our scenario...

- Simple map operations
 - □ raw survey data -> [budget, gender, age]
 - derived features [is_high_roller, is_male, is_female]
- Joins
 - \Box time_since_last_login = **f**(client_id, login_data)
- Aggregations
 - \Box normalized_age = g(mean(age), stddev(age))

The Agenda

The problem with feature engineering The solution: *Hamilton* Write once, run everywhere

- **Batch**
- Streaming
 Additional benefits of Hamilton
 OS progress/updates

Batch feature engineering

Goal

Compute features/infer model in batch

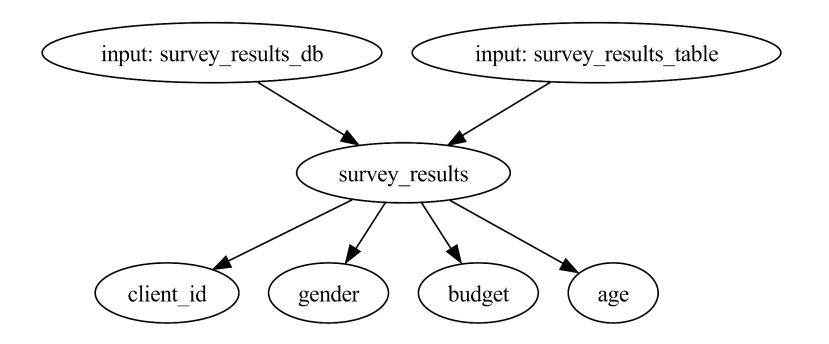
Context

- DB with raw survey results
- DB with client login data
- □ Model already trained [you can use this for training]
- Data is reasonable size [Hamilton can scale too]

Data loading

```
@extract columns(
    'budget',
    'age',
    'gender',
    'client id'
def survey results (
    survey results table: str,
    survey results db: str) -> pd.DataFrame:
    """Map operation to explode survey results to all fields
    Data comes in JSON, we've grouped it into a series.
    11 11 11
    conn = Connection(survey results db)
    return pd.read sql(conn, f"SELECT * FROM {survey results table}")
```


Data loading



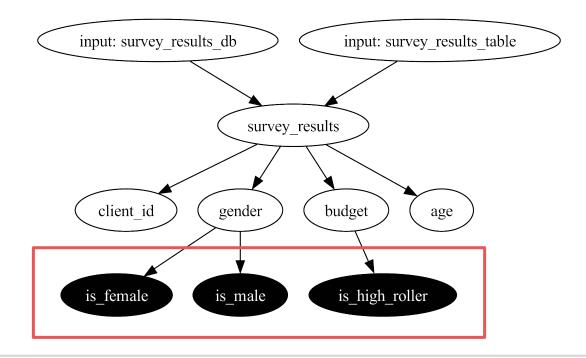
Map functions

```
def is_male(gender: pd.Series) -> pd.Series:
    return gender == 'male'
```

```
def is_female(gender: pd.Series) -> pd.Series:
    return gender == 'female'
```

def is_high_roller(budget: pd.Series) -> pd.Series:
 return budget > 1000

Map functions

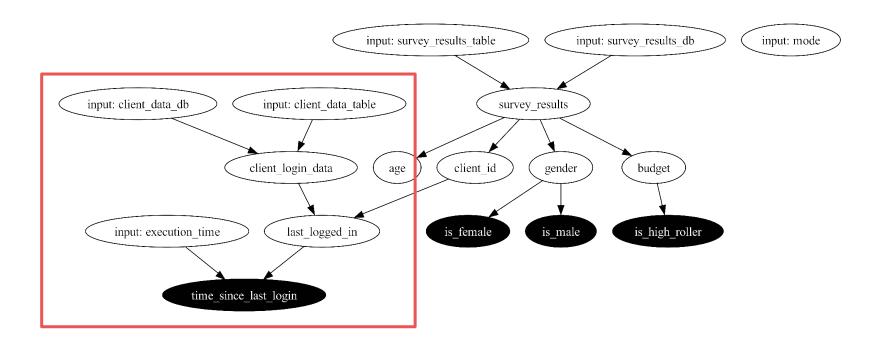


Joins

```
def client_login_data(table: str, db: str) -> pd.DataFrame:
    conn = create_connection(db)
    return pd.read_sql(f"SELECT * from {table}")
def last_logged_in(client_id: pd.Series, client_login_data: pd.DataFrame) -> pd.Series:
    return pd.merge(
        client_id,
        client_login_data,
        left_on='client_id',
        right_index=True)['last_logged_in']
```

```
def time_since_last_login(
    execution_time: datetime.datetime,
    last_logged_in: pd.Series) -> pd.Series:
    return execution_time - last_logged_in
```


Joins



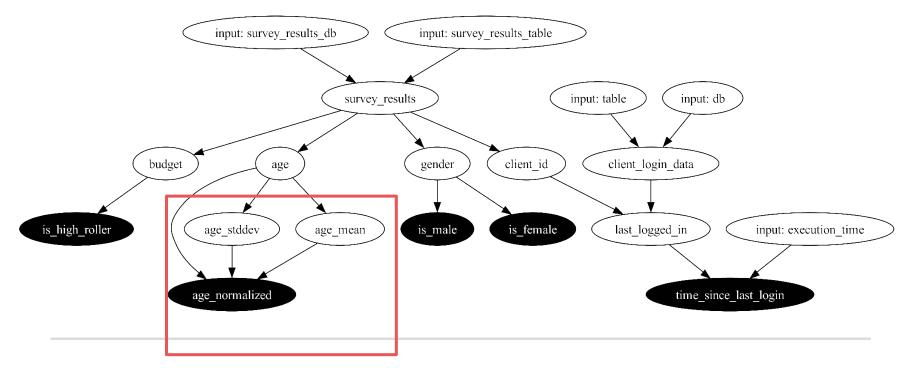
Aggregations

```
def age_mean(age: pd.Series) -> float:
    return age.mean()
```

```
def age_stddev(age: pd.Series) -> float:
    return age.std()
```

def age_normalized(age: pd.Series, age_mean: float, age_stddev: float) -> pd.Series:
 return (age - age_mean)/age_stddev

Aggregations



DAGWORKS

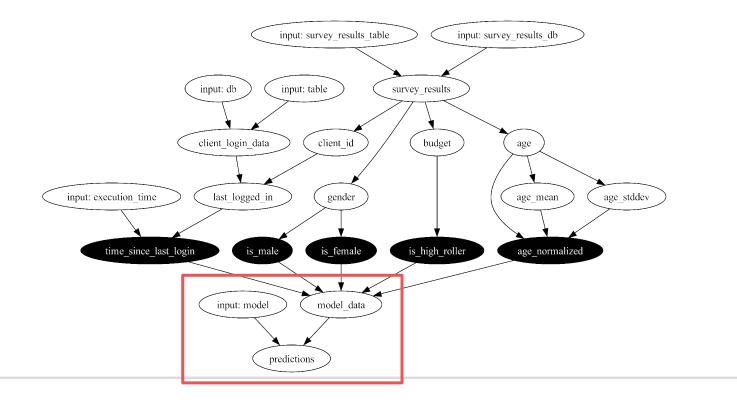
Inference

```
def model_data(
    age_normalized: pd.Series,
    is_high_roller: pd.Series,
    is_male: pd.Series,
    is_female: pd.Series,
    time_since_last_login: pd.Series) -> pd.DataFrame:
    return pd.DataFrame(...)
```

def predictions(

```
model: Model,
model_data: pd.DataFrame) -> pd.Series:
return model.predict(data)
```


Inference



Driver

#etl.py

```
from project import load data, map features, join features, agg features, model
dr = driver.Driver(
    {},
    load data, map features, join features, agg features, model)
inputs = {
        "survey results table" : ...,
        "survey results db" : ...,
        "execution time" : datetime.datetime.now(),
        "client data table" : ...,
        "client data db": ...,
        "model" : load model(...)
    }
predictions = dr.execute(['predictions'], inputs=inputs)
```


The Agenda

The problem with feature engineering The solution: *Hamilton* Write once, run everywhere

- **Batch**
- **Streaming**

Additional benefits of Hamilton OS progress/updates

Streaming features

Context

- Have service to give client login data
- Have stored aggregations from training
- Goal: "Near real time" == predict as soon as raw data is available

Changes required

- No aggregation available
- Swap out external join with API call
- Single datums, not dataframes [we treat them the same]

Streaming features

@config.when swap out features you need to change:

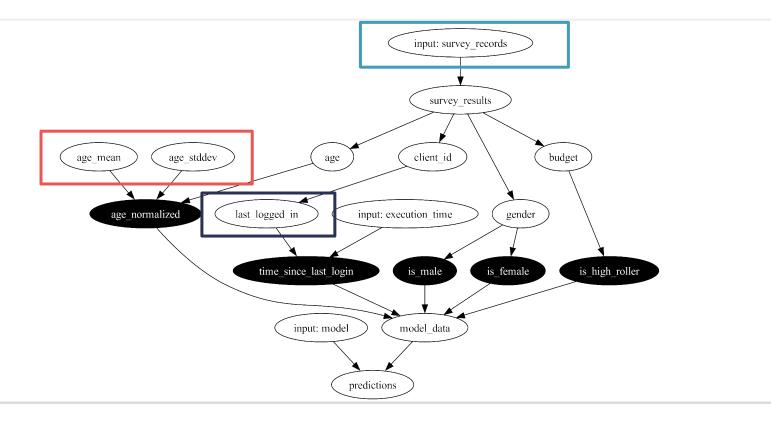
```
@extract_columns('budget', 'age', 'gender', 'client_id')
@config.when(mode='streaming')
def survey_results__streaming(survey_records: list[dict]) -> pd.DataFrame:
    return pd.DataFrame.from_records(survey_records)
```

```
@config.when(mode='streaming')
def last_logged_in_streaming(client_id: pd.Series) -> pd.Series:
    return pd.Series(query_login_service(ids=client_id.values()))
```

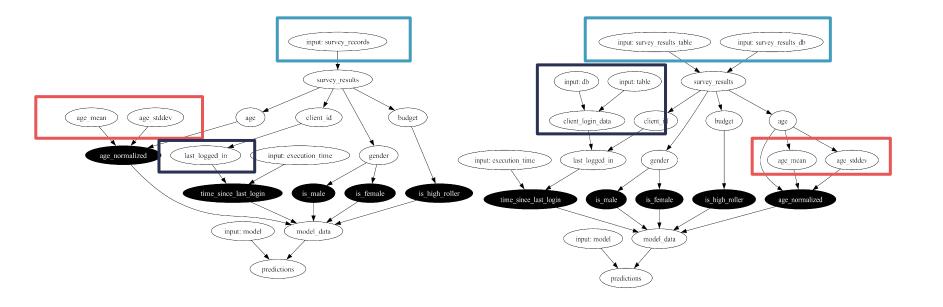
```
@config.when(mode='streaming')
def age_mean_streaming() -> float:
    return query('age mean')
```

```
@config.when(mode='streaming')
def age_stddev_streaming() -> float:
    return query('age_stddev')
```


Tying it together...



Tying it together...



Driver

```
# processor.py
from project import load data, map features, join features,
    agg features, model
config = {'mode' : 'streaming'}
dr = driver.Driver(config, load data, map features, join features,
         agg features, model)
def process records(records: list[dict]) -> list[float]:
    inputs = {
        "records" : records,
        "execution time" : datetime.datetime.now(),
        "model" : load model(...)
    }
   return dr.execute(['predictions'], inputs=inputs).values
```

DAGWORKS

The Agenda

The problem with feature engineering The solution: *Hamilton* Write once, run everywhere

- **Batch**
- **Streaming**

Additional benefits of Hamilton OS progress/updates

Portable FE code + ...

Hamilton lets you write transforms in python functions

These python functions provide everything you need:

- **Unit testing**: simple plain python functions!
- **Documentation**: use the docstring
- □ Modularity: small pieces -> by definition
- **Data catalogue**: code = central feature definition store
- Debugging: execute functions individually + breakpoints
- **Trustworthy data**: validation included out of the box

Integration with feature stores

Hamilton = transform layer

FS (Hopsworks, Feast, Tecton) = storage layer

Feast Integration



Broader Applications/Overall Stack

Hamilton improves code whenever python + data are involved

- LLM pipelines (RAG/fine-tuning)
- ML training pipelines
- DE pipelines (pandas, pyspark, polars, etc...)
- Complimentary with existing infrastructure

Airflow | dbt | prefect | etc... Langchain PySpark Kedro Ray & Dask SWE Skills Complementary Replaces Complementary Complementary + Replaces Complementary Uplevels

The Agenda

The problem with feature engineering The solution: *Hamilton* Write once, run everywhere

- **Batch**
- **Streaming**
- **•** Online

Additional benefits of Hamilton OS progress/updates

OS Progress

Thriving community (110k+ downloads) TRAN

- Myriad of production users ->
- Growing set of core contributors
- Full company dedicated to building it!

Looking for

- Contributors (hacktoberfest!)
- Bug hunters
- User feedback

DAGWORKS

In Progress

Expressive APIs

- Flexible loading/materialization
- New high-power decorators
- Your idea here!>

Execution

- □ Hamilton compile -> orchestration
- Snowpark integration
- Your idea here!>

jmarvin90 commented 7 days ago		(
	ear about your workflow with/without it. Not sure if you can share c to do your workflow with it, what it would take without it, and what i	
	we are extracting a large number (dozens) of features from a data equires them all as input (e.g. to fit a model/make a prediction), we	
 The function definition for the as parameters; 	'process' node gets a bit unwieldy when we have to specify a really	large number of i
2. We have to create a new featu	re extraction node and update the processing node definition for ea	ach new feature w
e.g.		
<pre>def extract_feature_1(col_a:p return helpersdo_someth</pre>		
# Dozens more feature node de	finitions	
<pre>def extract_feature_100(col_z return helpersdo_someth</pre>		
# Really long definition!		
<pre>def process_all_features(extract_feature_1:pd.Seri</pre>	es.	
extract_feature_2:pd.Seri	ies,	
# Dozens more feature nod 	ie references	
<pre>extract_feature_100:pd.Se) -> object:</pre>	eries	
return ml_model.do_some_m	naths (
extract_feature_1:pd. extract_feature_2:pd.		
# Dozens more feature		
 extract feature 1000:	nd.Series	

Give Hamilton a Try! We'd Love Your Feedback.

www.tryhamilton.dev

- > pip install sf-hamilton
- on <u>github</u> (https://github.com/dagworks-inc/hamilton)
- create & vote on issues on github
- join us on on <u>Slack</u>

Blog post on feature engineering

Code to play with

Thank you!

Questions?

- 😏 https://twitter.com/elijahbenizzy
- in https://www.linkedin.com/in/elijahbenizzy/
- https://github.com/dagworks-inc/hamilton
- 🔀 elijah@dagworks.io
- \star linktr.ee/elijahbenizzy

