Feature Engineering with Hamilton
Write once / run everywhere

Elijah ben Izzy | Co-founder/CTO | [P>DAGWORKS

FEATURE STORE

§ SUMMIT Organized by 3 HOPSWORKS
2023

TL;DR

| want to convince you that...

1. Writing portable feature engineering code is hard
P SOTA approaches aren’t flexible/powerful enough
3. Hamilton can help you:

a. Write code to run in multiple contexts

b. Keep your code organized/clean
4. Hamilton is easy to get started with/easy to use!

[»DAGWORKS

[»DAGWORKS

The unifying layer for Data, ML, and LLM pipelines
Open Core!

>>> I'm not selling you anything in this talk! <<<

[»DAGWORKS

77’ Hamilton is Open Source!!

> pip install sf-hamilton
Get started in <15 minutes!

Documentation

Try it out

[»DAGWORKS

https://hamilton.readthedocs.io/
https://www.tryhamilton.dev

* Try Hamilton Get Started Reference Documentation (% DAGWorks Inc. [GitHub (% 0

B

https://www.tryhamilton.dev

H a m i Ito n Try Hamilton right here in your browser

1 # Declare and link your transformations as functions....

. 2 1import pandas as pd
Wrangle Pandas codebases into shape. 3

4~ def a(input: pd.Series) -> pd.Series:
return input % 7

5

6

7~ def b(a: pd.Series) -> pd.Series:
© Learn (5 mins)) Github 890+ 8 r((eturs o %2) 2

9

10 - def c(a: pd.Series, b: pd.Series) -> pd.Series:

Write always unit testable code 1 i T
. N . 12
Add runtime data validation easily 13~ def d(c: pd.Series) -> pd.Series:
L 14 return c ** 3|
Produce readable and maintainable
code 1 # And run them!
2 1import functions m
Visualize lineage (click the run button 3 from hamilton import driver
4 dr = driver.Driver({}, functions)
to see) 5 result = dr.execute(
o 6 D", "B, Heb. g,
Run anywhere python runs: in airflow, 7 inputs={'input': pd.Series([1, 2, 3, 4, 51D}
. . 8
upyter, fastapi, etc... .
Jupyt P 9 print(result))
7 10 dr.display_all_functions("graph.dot", {})

[Skip the CS degree to use it

»DAGWORKS

https://www.tryhamilton.dev/

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
L Batch
L Streaming
Additional benefits of Hamilton
OS progress/updates

[»DAGWORKS

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
> Batch
L Streaming
Additional benefits of Hamilton
OS progress/updates

» DAGWORKS

Why feature engineering is hard

Common scenario (e-commerce)

d Customers fill out survey results
d Your model makes predictions
d Goal: get survey results to model

Caveats

O Survey results trickle in (streaming)

O Data comes in dumps nightly (batch)

O Multiple teams working together (features x infra x data)
O Features are derived from data (model = h(g(f(x)), ..)

[»DAGWORKS

Why feature engineering is hard

customer surveys

batch data

live browsing
data

feature transformations

model training/inference

[»DAGWORKS

Why feature engineering is hard

feature transformations inference

[»DAGWORKS

Why feature engineering is hard

Contexts

4 Run on tables in your data warehouse for training data
4 Runinside a streaming processor for near-real-time
4 Transform browsing data live

Complications

1 Ensuring the data is the same in all contexts:
a How do you handle joins/alt data sources in non-batch mode?
d How do you include aggregations in streaming mode?

4 How do you track lineage, versions, etc... for different data sources?

[»DAGWORKS

Why feature engineering is hard

Current approaches
Context-specific execution Feature DSL to unify
- >
- Cumbersome to manage - Tougher to grok
- 2 sets of tests - Limited to specific operations
- 2 sets of versions - Opinionated on agg, joins
- Do they match?

[»DAGWORKS

Why feature engineering is hard

Idea — can we write normal python code that is...

DRY (don't repeat yourself)
Applicable in all settings
Fully customizable:
- You decide joins
- You decide aggregation approach
- You write map fns however you want
- Bring your own infrastructure
Self-documenting + implies structure

[»DAGWORKS

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
> Batch
L Streaming
Additional benefits of Hamilton
OS progress/updates

[» DAGWORKS

Hamilton: the “a-ha” Moment

Idea What if every feature corresponded to exactly one python fn?

And... what if the way that function was written tells you everything you
needed to know?

In Hamilton, the artifact (feature) is determined by the name of the function.
The dependencies are determined by the parameters.

[»DAGWORKS

Old way vs Hamilton way:

Insteqd of* df[ncn] df[nan] + df[nbn]
df["d"] = transform(df["c"])

You declare
def c(a: pd.Series, b: pd.Series) -> pd.Series:
"""Sums a with b"""
return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to ..."""
new _column = _transform logic(c)
return new_column

*Hamilton supports *all* python objects, not just dfs/series!

[»DAGWORKS

Old way vs Hamilton way:

Instead of fl"c"]| =[@E["a"] + dE["D"]
r f["d"]| = |transform(df["c"])
Outputs == Function Name l)
1 Inputs == Function Arguments

"4

def pd.Series, |b|] pd.Series) -> pd.Series:
min "Sums a With b rrmrmn
return a + b

You declare

def pd.Series) -> pd. Serles
Transforms C to ...""!
new_column = _transform logic(c)
return new_column

*Hamilton supports *all* python objects, not just dfs/series! 3 DAGWORKS

Full hello worid

] # feature logic.py
Functions def c(a: pd.Series, b: pd.Series) -> pd.Series:
mwwn "Sums a With b" mwwn
return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to e
new_column = _transform logic(c)
return new_column

Driver says what/when to execute

run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...}, feature logic)
df result = dr.execute(['c', 'd'])

print (df _result)

[»DAGWORKS

Hamilton TL:DR

1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution

feature logic.py

def c(a: pd.Series, b: pd.Series) -> pd.Series:
mn "Replaces C = a + b mrrn
return a + b

run.py
from hamilton import driver

import feature logic

dr = driver .Driver({'a': ..., 'b': ...},
feature_ logic)

df result = dr.execute(['c', 'd'])

print (df_result)

def d(c: pd.Series) -> pd.Series:
"""Replaces d = transform(c)"""
new_column = _transform logic(c)
return new_column

[»DAGWORKS

Hamilton: extensions

Q: Doesn’t Hamilton make your code more verbose?
A: Yes, but that's not always a bad thing. When it is, we have decorators!
@tag # attach metadata

@parameterize # curry + repeat a function
Gextract columns # one dataframe -> multiple series
Gcheck output # data validation

@subdag # recursively utilize groups of nodes

Lol ddo o

@... # new ones all the time

[»DAGWORKS

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
> Batch
L Streaming
Additional benefits of Hamilton
OS progress/updates

[» DAGWORKS

Write once, run everywhere

One* feature per function

d Map operations — single versus bulk operations are equivalent
O Aggregation* — you choose (store, compute on the fly, update

regularly, etc...)
d Joins* — use query instead of join

*for aggregations/joins you reimplement just the parts you need to

[»DAGWORKS

Write once, run everywhere

Back to our scendario...

d Simple map operations

d raw survey data -> [budget, gender, age]

Q derived features [is_high_roller, is_male, is_female]
d Joins

d time_since_last_login = f(client_id, Iogin_doto)
d Aggregations

d normalized_age = g(mean(age), stddev(age))

[»DAGWORKS

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
L Batch
L Streaming
Additional benefits of Hamilton
OS progressfupdates

» DAGWORKS

Batch feature engineering

Goal

O Compute features/infer model in batch

Context

d DB with raw survey results

d DB with client login data

d Model O'f@(]dy trained [you can use this for training]
d Data is reasonable size [Hamiton can scae too]

[»DAGWORKS

Data loading

@extract columns (
'budget'’',
'age',
'gender',
'client id'
)
def survey results(
survey results table: str,
survey results db: str) -> pd.DataFrame:
"""Map operation to explode survey results to all fields
Data comes in JSON, we've grouped it into a series.
conn = Connection (survey_ results_db)
return pd.read sql(conn, f"SELECT * FROM {survey results_table}")

[»DAGWORKS

Data loading

@ survey_resu@ @ survey_results@

» DAGWORKS

Map functions

def is male(gender: pd.Series) -> pd.Series:
return gender == 'male'

def is female(gender: pd.Series) -> pd.Series:
return gender == 'female'

def is high roller (budget: pd.Series) -> pd.Series:
return budget > 1000

[»DAGWORKS

Map functions

input: survey results db input: survey results table

is_high roller

D

» DAGWORKS

Joins

def client login_data(table: str, db: str) -> pd.DataFrame:
conn = create_connection (db)
return pd.read sql (£"SELECT * from {table}")

def last logged in(client_id: pd.Series, client login data: pd.DataFrame) -> pd.Series:
return pd.merge (
client_id,
client login_data,
left on='client _id',
right index=True) ['last logged in']

def time since last login(
execution_ time: datetime.datetime,
last_logged _in: pd.Series) -> pd.Series:
return execution_time - last_logged_in

[»DAGWORKS

Joins

input: client_data_db input: client_data_table
client login data

input: execution_time last_logged_in

time since last login

input: survey_results_table

is_female

is_male

input: survey results db

is_high roller

[»DAGWORKS

Aggregations

def age mean(age: pd.Series) -> float:
return age.mean ()

def age_stddev(age: pd.Series) -> float:
return age.std()

def age_normalized(age: pd.Series, age_mean: float, age_stddev: float) -> pd.Series:
return (age - age _mean)/age_stddev

[»DAGWORKS

Aggregations

C et >
(o) Comtr) Coonit)

client_login_data

) A

is_male is_female last_logged in input: execution_time

is_high_roller

age normalized time_since_last_login

» DAGWORKS

Inference

def model data (
age normalized: pd.Series,
is high roller: pd.Series,
is male: pd.Series,
is female: pd.Series,
time since last login: pd.Series) -> pd.DataFrame:
return pd.DataFrame(...)

def predictions (
model: Model,
model data: pd.DataFrame) -> pd.Series:
return model .predict (data)

[»DAGWORKS

Inference

input: survey results table input: survey results db

> o

G o
<>

is_high_roller age_normalized

input: execution time last logged in

time_since_last_login is_male is_female

» DAGWORKS

Driver

#etl.py

from project import load data, map features, join features, agg features, model
dr = driver.Driver (

{1,

load data, map features, join_ features, agg features, model)

inputs = {
"survey results_table" : ...,
"survey results db" : ...,
"execution time" : datetime.datetime.now(),
"client_data_ table" : ...,
"client_data _db": ...,
"model" : load model(...)
}

predictions = dr.execute(['predictions'], inputs=inputs)

[»DAGWORKS

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
> Batch
L Streaming
Additional benefits of Hamilton
OS progressfupdates

[» DAGWORKS

Streaming features

Context

1 Have service to give client login data
d Have stored aggregations from training
d Goal: “Near real time” == predict as soon as raw data is available

Changes required

1 No aggregation available
4 Swap out external join with API call
[Single datums, not dataframes [we treat them the same]

[»DAGWORKS

Streaming features

([@EGRTIGAUREH swap out features you need to change:

@extract columns('budget', 'age', 'gender',6 'client id')
@config.when (mode='streaming')

def survey results__streaming(survey records: list[dict]) -> pd.DataFrame:

return pd.DataFrame.from records (survey records)

@config.when (mode='streaming')
def last_logged in__streaming(client id: pd.Series) -> pd.Series:
return pd.Series(query login_service (ids=client_id.values()))

@config.when (mode='streaming')
def age _mean streaming() -> float:
return query('age_mean')

@config.when (mode='streaming')
def age_stddev__streaming() -> float:
return query('age_stddev')

[»DAGWORKS

Tying it together...

input: survey_records

\ J

survey results

age normalized “ @ input: execution_time
time since last login is_male is female

is_high roller

» DAGWORKS

Tying it together...

age normalized

last logged in

input: survey_records

input: survey results_table input: survey results db

time_since last_login

is_male is_female is_high_roller

time_since_last_login is_male

is_female

age_mean

age_normalized

[»DAGWORKS

Driver

processor.py
from project import load data, map features, join_ features,

agg_features, model
config = {'mode' : 'streaming'}
dr = driver.Driver (config, load data, map features, join features,

agg_features, model)

def process records(records: list[dict]) -> list[float]:

inputs = {
"records" : records,
"execution time" : datetime.datetime.now(),

"model" : load model(...)
}

return dr.execute(['predictions'], inputs=inputs) .values

[»DAGWORKS

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
> Batch
L Streaming
Additional benefits of Hamilton
OS progressfupdates

» DAGWORKS

Portable FE code +....

Hamilton lets you write transforms in python functions

These python functions provide everything you need:

I Ry Wy WOy Hiy N

Unit testing: simple — plain python functions!
Documentation: use the docstring

Modularity: small pieces -> by definition

Data catalogue: code = central feature definition store
Debugging: execute functions individually + breakpoints
Trustworthy data: validation included out of the box

[»DAGWORKS

Integration with feature stores

Hamilton = transform layer
FS (Hopsworks, Feast, Tecton) = storage layer

Feast Infegration
Offline store get historical features T':'a": 9
write to offiine
. Y p; ke
Feast
/ Registry
apply
7/ X
4 \
Z \
I

[»DAGWORKS

https://medium.com/@stefan.krawczyk/featurization-integrating-hamilton-with-feast-6ad70d5c6a9c

Broader Applications/Overall Stack

Hamilton improves code whenever python + data are involved

3
3
3

d Complimentary with existing infrastructure

Langchain
Kedro

SWE Skills

| etc...

Complementary
Replaces
Complementary
Complementary + Replaces
Complementary
Uplevels

[»DAGWORKS

https://blog.dagworks.io/p/containerized-pdf-summarizer-with
https://hamilton.dagworks.io/en/latest/how-tos/use-for-training-models/
https://github.com/DAGWorks-Inc/hamilton/tree/main/examples/data_loaders
https://towardsdatascience.com/simplify-airflow-dag-creation-and-maintenance-with-hamilton-in-8-minutes-e6e48c9c2cb0
https://towardsdatascience.com/hamilton-dbt-in-5-minutes-62e4cb63f08f
https://medium.com/@stefan.krawczyk/simplify-prefect-workflow-creation-and-maintenance-with-hamilton-in-9-minutes-e7adaa7a8ab4
https://www.reddit.com/r/apachespark/comments/163yugt/organizing_pyspark_transformations_with_hamilton/
https://multithreaded.stitchfix.com/blog/2022/02/22/scaling-hamilton/

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere
> Batch
L Streaming
> Online
Additional benefits of Hamilton
OS progress/updates

[» DAGWORKS

OS Progress

o o ° - %) &/ BRITISH
Thriving community (110k+ downloads) TRANSFIX" “oby MCYCUNG
¥% o
4 Myriad of production users -> £ = T=is h‘
d Growing set of core contributors STITCH FIX o
4 Full company dedicated to building it! & 4 -
A s Government
Lookingfor s HABITAT |DgialServce pacific

3 Contributors (hacktoberfest!) @lcites Opendoor
D B u g h unters RISK SOLUTIONS ‘Q
ad User feedback e

KI veriff V/

[»DAGWORKS

In Progress

Expressive APIs

1 Flexible loading/materialization
4 New high-power decorators
4 <Youridea here!>

Execution

d Hamilton compile -> orchestration
4 Snowpark integration
4 <Youridea here!>

jmarvin90 commented 7 days ago Q-

I guess I'd be really curious to hear about your workflow withjwithout it. Not sure if you can share code or not, but I'd
love to know what it would take to do your workflow with it, what it would take without it, and what the value of it would
be to your day-to-day.

If we consider an example in which we are extracting a large number (dozens) of features from a dataset and then passing

those features into a node which requires them all as input (e.g. to fit a modelfmake a prediction), we have a couple of
friction points:

1. The function definition for the 'process" node gets a bit unwieldy when we have to specify a really large number of inputs
as parameters;

2. We have to create a new feature extraction node and update the processing node definition for each new feature we add

eg.

def extract_feature_1(col_a:pd.Series) -> pd.Series:
return helpers._do_something(col_a)

Dozens more feature node definitions

def extract_feature_100(col_zzz:pd.Series) -> pd.Series:
return helpers._do_something_else(col_zzz)

Really long definition!

def process_all_features(
extract_feature_1:pd.Series,
extract_feature_2:pd.Series,
Dozens more feature node references

extract_feature_100: pd.Series

) -> object:

return ml_model.do_some_maths(
extract_feature_1:pd.Series,
extract_feature_2:pd.Series,
Dozens more feature node references

extract_feature_1000:pd. Series

mattharrison commented 12 days ago Q -
Hey there,

I'm curious to try out Hamilton on a multi-step pandas transform. I'm stuck though because the input CSV has spaces in the
column names and | can't find any documentation for dealing with that. | figured there might be a decorator that helps with
this but | can't see one.

For example, my input column is named "Lot Frontage" and | want the output to be named "lot_frontage".

© @ mattharrison added the (fiage) label 12 days ago

[»DAGWORKS

Give Hamilton a Try! We'd Love Your Feedback.

>pip install sf-hamilton

on github (https://github.com/dogworks—inc/homilton)

create & vote on issues on github

join us on on Slack

[»DAGWORKS

http://www.tryhamilton.dev
https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://github.com/DAGWorks-Inc/hamilton/tree/main/examples/feature_engineering/write_once_run_everywhere_blog_post

Thank you!

Questions?
https://twitter.com/elijahbenizzy
in https://www.linkedin.com/in/elijahbenizzy/
@ https:[/github.com/dagworks-inc/hamilton
elijgh@dagworks.io

linktr.ee/elijahbenizzy

FEATURE STORE
\—V]— SUMMIT
2023

O,

mailto:elijah@dagworks.io

