
Organized by

Feature Engineering with Hamilton

Elijah ben Izzy | Co-founder/CTO |

Write once / run everywhere

I want to convince you that…

1. Writing portable feature engineering code is hard
2. SOTA approaches aren’t flexible/powerful enough
3. Hamilton can help you:

a. Write code to run in multiple contexts
b. Keep your code organized/clean

4. Hamilton is easy to get started with/easy to use!

TL;DR

The unifying layer for Data, ML, and LLM pipelines
Open Core!

>>> I’m not selling you anything in this talk! <<<

 Hamilton is Open Source!!

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton.readthedocs.io/

Try it out

https://www.tryhamilton.dev/

https://hamilton.readthedocs.io/
https://www.tryhamilton.dev

https://www.tryhamilton.dev

https://www.tryhamilton.dev/

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

Why feature engineering is hard

Common scenario (e-commerce)
❏ Customers fill out survey results
❏ Your model makes predictions
❏ Goal: get survey results to model
Caveats
❏ Survey results trickle in (streaming)
❏ Data comes in dumps nightly (batch)
❏ Multiple teams working together (features x infra x data)
❏ Features are derived from data (model = h(g(f(x)), …)

Why feature engineering is hard

customer surveys

batch data

live browsing
data

feature transformations

map operations

aggregations

joins/queries

model training/inference

train in batch

serve results

snapshot result

Why feature engineering is hard

customer surveys

batch data

live browsing
data

feature transformations

map operations

aggregations

joins/queries

model training/inference

train in batch

serve results

snapshot result

Why feature engineering is hard

Contexts
❏ Run on tables in your data warehouse for training data
❏ Run inside a streaming processor for near-real-time
❏ Transform browsing data live
Complications
❏ Ensuring the data is the same in all contexts:

❏ How do you handle joins/alt data sources in non-batch mode?
❏ How do you include aggregations in streaming mode?

❏ How do you track lineage, versions, etc… for different data sources?

Why feature engineering is hard

Current approaches

Context-specific execution

- Cumbersome to manage
- 2 sets of tests
- 2 sets of versions
- Do they match?

Feature DSL to unify

- Tougher to grok
- Limited to specific operations
- Opinionated on agg, joins

Why feature engineering is hard

Idea – can we write normal python code that is…
- DRY (don’t repeat yourself)
- Applicable in all settings
- Fully customizable:

- You decide joins
- You decide aggregation approach
- You write map fns however you want
- Bring your own infrastructure

- Self-documenting + implies structure

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

Idea What if every feature corresponded to exactly one python fn?

And… what if the way that function was written tells you everything you
needed to know?

In Hamilton, the artifact (feature) is determined by the name of the function.
The dependencies are determined by the parameters.

Hamilton: the “a-ha” Moment

Old way vs Hamilton way:

Instead of*

You declare

*Hamilton supports *all* python objects, not just dfs/series!

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

df["c"] = df["a"] + df["b"]
df["d"] = transform(df["c"])

Instead of

You declare
Inputs == Function Arguments

Old way vs Hamilton way:

df["c"] = df["a"] + df["b"]
df["d"] = transform(df["c"])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

*Hamilton supports *all* python objects, not just dfs/series!

Full hello world
feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

Hamilton TL;DR

1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Q: Doesn’t Hamilton make your code more verbose?
A: Yes, but that’s not always a bad thing. When it is, we have decorators!
❏ @tag # attach metadata
❏ @parameterize # curry + repeat a function
❏ @extract_columns # one dataframe -> multiple series
❏ @check_output # data validation
❏ @config.when # conditional transforms
❏ @subdag # recursively utilize groups of nodes
❏ @... # new ones all the time

Hamilton: extensions

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

Write once, run everywhere

One* feature per function
❏ Map operations – single versus bulk operations are equivalent
❏ Aggregation* – you choose (store, compute on the fly, update

regularly, etc…)
❏ Joins* – use query instead of join

*for aggregations/joins you reimplement just the parts you need to

Write once, run everywhere

Back to our scenario…
❏ Simple map operations

❏ raw survey data -> [budget, gender, age]
❏ derived features [is_high_roller, is_male, is_female]

❏ Joins
❏ time_since_last_login = f(client_id, login_data)

❏ Aggregations
❏ normalized_age = g(mean(age), stddev(age))

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

Batch feature engineering

Goal
❏ Compute features/infer model in batch
Context
❏ DB with raw survey results
❏ DB with client login data
❏ Model already trained [you can use this for training]

❏ Data is reasonable size [Hamilton can scale too]

Data loading

@extract_columns(
 'budget',
 'age',
 'gender',
 'client_id'
)
def survey_results(
 survey_results_table: str,
 survey_results_db: str) -> pd.DataFrame:
 """Map operation to explode survey results to all fields
 Data comes in JSON, we've grouped it into a series.
 """
 conn = Connection(survey_results_db)
 return pd.read_sql(conn, f"SELECT * FROM {survey_results_table}")

Data loading

Map functions

def is_male(gender: pd.Series) -> pd.Series:
return gender == 'male'

def is_female(gender: pd.Series) -> pd.Series:
return gender == 'female'

def is_high_roller(budget: pd.Series) -> pd.Series:
return budget > 1000

Map functions

Joins

def client_login_data(table: str, db: str) -> pd.DataFrame:
 conn = create_connection(db)
 return pd.read_sql(f"SELECT * from {table}")

def last_logged_in(client_id: pd.Series, client_login_data: pd.DataFrame) -> pd.Series:
 return pd.merge(
 client_id,
 client_login_data,
 left_on='client_id',
 right_index=True)['last_logged_in']

def time_since_last_login(
 execution_time: datetime.datetime,
 last_logged_in: pd.Series) -> pd.Series:
 return execution_time - last_logged_in

Joins

Aggregations

def age_mean(age: pd.Series) -> float:
return age.mean()

def age_stddev(age: pd.Series) -> float:
return age.std()

def age_normalized(age: pd.Series, age_mean: float, age_stddev: float) -> pd.Series:
return (age - age_mean)/age_stddev

Aggregations

Inference

def model_data(
 age_normalized: pd.Series,
 is_high_roller: pd.Series,
 is_male: pd.Series,
 is_female: pd.Series,
 time_since_last_login: pd.Series) -> pd.DataFrame:
 return pd.DataFrame(...)

def predictions(
 model: Model,
 model_data: pd.DataFrame) -> pd.Series:
 return model.predict(data)

Inference

Driver

#etl.py

from project import load_data, map_features, join_features, agg_features, model
dr = driver.Driver(
 {},
 load_data, map_features, join_features, agg_features, model)

inputs = {
 "survey_results_table" : ...,
 "survey_results_db" : ...,
 "execution_time" : datetime.datetime.now(),
 "client_data_table" : ...,
 "client_data_db": ...,
 "model" : load_model(...)
 }
predictions = dr.execute(['predictions'], inputs=inputs)

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

Streaming features

Context
❏ Have service to give client login data
❏ Have stored aggregations from training
❏ Goal: “Near real time” == predict as soon as raw data is available
Changes required
❏ No aggregation available
❏ Swap out external join with API call
❏ Single datums, not dataframes [we treat them the same]

Streaming features

@config.when swap out features you need to change:
@extract_columns('budget', 'age', 'gender', 'client_id')
@config.when(mode='streaming')
def survey_results__streaming(survey_records: list[dict]) -> pd.DataFrame:
 return pd.DataFrame.from_records(survey_records)

@config.when(mode='streaming')
def last_logged_in__streaming(client_id: pd.Series) -> pd.Series:
 return pd.Series(query_login_service(ids=client_id.values()))

@config.when(mode='streaming')
def age_mean__streaming() -> float:

return query('age_mean')

@config.when(mode='streaming')
def age_stddev__streaming() -> float:

return query('age_stddev')

Tying it together…

Tying it together…

Driver

processor.py
from project import load_data, map_features, join_features,
 agg_features, model

config = {'mode' : 'streaming'}
dr = driver.Driver(config, load_data, map_features, join_features,
 agg_features, model)

def process_records(records: list[dict]) -> list[float]:
 inputs = {
 "records" : records,
 "execution_time" : datetime.datetime.now(),
 "model" : load_model(...)
 }
 return dr.execute(['predictions'], inputs=inputs).values

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming

Additional benefits of Hamilton
OS progress/updates

The Agenda

Hamilton lets you write transforms in python functions
These python functions provide everything you need:
❏ Unit testing: simple – plain python functions!
❏ Documentation: use the docstring
❏ Modularity: small pieces -> by definition
❏ Data catalogue: code = central feature definition store
❏ Debugging: execute functions individually + breakpoints
❏ Trustworthy data: validation included out of the box

Portable FE code + ...

Hamilton = transform layer
FS (Hopsworks, Feast, Tecton) = storage layer
Feast Integration

Integration with feature stores

https://medium.com/@stefan.krawczyk/featurization-integrating-hamilton-with-feast-6ad70d5c6a9c

Broader Applications/Overall Stack

Hamilton improves code whenever python + data are involved
❏ LLM pipelines (RAG/fine-tuning)
❏ ML training pipelines
❏ DE pipelines (pandas, pyspark, polars, etc…)
❏ Complimentary with existing infrastructure

Airflow | dbt | prefect | etc…
Langchain
PySpark

Kedro
Ray & Dask
SWE Skills

Complementary
Replaces

Complementary
Complementary + Replaces

Complementary
Uplevels

https://blog.dagworks.io/p/containerized-pdf-summarizer-with
https://hamilton.dagworks.io/en/latest/how-tos/use-for-training-models/
https://github.com/DAGWorks-Inc/hamilton/tree/main/examples/data_loaders
https://towardsdatascience.com/simplify-airflow-dag-creation-and-maintenance-with-hamilton-in-8-minutes-e6e48c9c2cb0
https://towardsdatascience.com/hamilton-dbt-in-5-minutes-62e4cb63f08f
https://medium.com/@stefan.krawczyk/simplify-prefect-workflow-creation-and-maintenance-with-hamilton-in-9-minutes-e7adaa7a8ab4
https://www.reddit.com/r/apachespark/comments/163yugt/organizing_pyspark_transformations_with_hamilton/
https://multithreaded.stitchfix.com/blog/2022/02/22/scaling-hamilton/

The problem with feature engineering
The solution: Hamilton
Write once, run everywhere

↳ Batch
↳ Streaming
↳ Online

Additional benefits of Hamilton
OS progress/updates

The Agenda

OS Progress

Thriving community (110k+ downloads)

❏ Myriad of production users ->
❏ Growing set of core contributors
❏ Full company dedicated to building it!

Looking for

❏ Contributors (hacktoberfest!)
❏ Bug hunters
❏ User feedback

In Progress

Expressive APIs

❏ Flexible loading/materialization
❏ New high-power decorators
❏ <Your idea here!>

Execution

❏ Hamilton compile -> orchestration
❏ Snowpark integration
❏ <Your idea here!>

49

Give Hamilton a Try! We’d Love Your Feedback.

www.tryhamilton.dev

> pip install sf-hamilton

⭐ on github (https://github.com/dagworks-inc/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack

Blog post on feature engineering

Code to play with

http://www.tryhamilton.dev
https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://github.com/DAGWorks-Inc/hamilton/tree/main/examples/feature_engineering/write_once_run_everywhere_blog_post

Thank you!
Questions?

https://twitter.com/elijahbenizzy

https://www.linkedin.com/in/elijahbenizzy/

https://github.com/dagworks-inc/hamilton

elijah@dagworks.io

linktr.ee/elijahbenizzy

mailto:elijah@dagworks.io

