< databricks

Delivering Personalized &
Realtime Context for LLM

Databricks Feature & Function Serving

Aakrati Talati Mingyang Ge

TL Feature Serving - Databricks ML/Al Engineer - Databricks

FEATURE STORE
\ SUMMIT Organized by 3 HOPSWORKS

2023

FEATURE STORE
‘ SUMMIT
2023

Outline
Delivering personalized context using Feature Serving

e Traditional hotel booking website
e Bring LLM to hotel booking

o Context
o Enterprise governance
e Demo

e Conclusion & Questions

Traditional hotel booking website

FEATURE STORE
~ SUMMIT
2023

FEATURE STORE
‘ SUMMIT
2023

Any ...
Traditional hotel booking website

e Website is built on
o Search
o Ranking
o And Personalization
e Personal data in the lakehouse

Bringing LLM to hotel booking website

FEATURE STORE
~ SUMMIT
2023

Generic chatbot

Out-of-the-box LLM without personalized context

'input’: 'Plan a 7-day vacation to the Amalfi Coast around September
for userid "a-456".,

‘output’: "Sure! | can help you plan a 7-day vacation to the Amalfi Coast
in September. However, | am an Al language model and | don't have
access to your personal information. | suggest you contact a travel
agency or use a travel booking website to plan your trip. They can help
you with flights, accommodations, and activities. Have a great trip!"

User data in the Lakehouse

a

<~ Databricks Lakehouse

-

User_I daily_I
D o
a-123 80
a-127 120

a-456 700

daily_hi
100

250

1000

User data
dietary_pre num_peopl
f seasonal e
1] fall 2
['vegan'] anytime 1
['vegetarian®,
"no
peanuts'] summer 4

~

Feature & Function
Serving

/

"

Model Serving
With auto-pipelining of
feature & functions

N
|
|
/

ol

FEATURE STORE
SUMMIT
2023

Feature Engineering in Unity Catalog

Your Lakehouse is your feature store

Any table is a feature table - A primary key is all you need
One copy of your data, accessible from all workspaces
No more training/serving skew!

Lineage and governance aware

Real-time Feature + Function Serving

Your Lakehouse supports real-time Al at scale

For those features that require real-time calculation

Lookups and calculations can both be run in realtime

Can support arbitrary python functions

Can support arbitrary function chaining

Increased contextual understanding leads to better chatbots

Personalized context from lakehouse

FEATURE STORE
~ SUMMIT
2023

FEATURE STORE
‘ SUMMIT
2023

Bringing it all together!

& Y

feature & function serving

Plan a 7-day vacation to the Amalfi

Coast around September for user id -
"a-456" E Lookup user preference]

N))
LangChain
Vector Search

user_preference
LLM <:| relevant_hotels / feature & function serving \
E Lookup hotel prices
final_price
_ — ,
ﬁCalculate total price after tax]

ﬁfc Calculate final price]
Based on your preference, ... \ v after discount /

[

FEATURE STORE
‘ SUMMIT
2023

Workflow

What do | know about this user?

> Feature & Function Serving: Get the user’s budget and preferences / el \

E Lookup hotel prices

fx Calculate total price after tax

> Vector search: Get top-K hotels from vector search based on user's preferences
JSC Calculate final price
K after discount /
[

{“hotel_id”: “AB123”, “final price”: 4590.81),

What are the best hotels based on the user's preferences?

What is the total amount your trip will cost ?

1

> Feature & Function Serving: Get real time availability and prices, and calculate total prices

using function chaining

Al driven travel chatbot:
Demo with personal context from Feature & Function Serving

FEATURE STORE
~ SUMMIT
2023

FEATURE STORE
kM- SUMMIT
2023

Key Takeaways

Feature & Function Serving - brings personalized context at your fingertips!

e Feature Engineering in Unity Catalog
o Your Lakehouse is your feature store
o Lineage and governance aware

e Real-time Feature + Function Serving
o For those features that require real-time calculation
o Arbitrary python functions + Function chaining

Questions?

Email: feature-serving@databricks.com

FEATURE STORE
~ SUMMIT
2023

ol

FEATURE STORE
SUMMIT
2023

Code Snippets - Create Feature Serving Endpoint

hotel_endpoint_name = "hotel-final-price"
Create a lookup to fetch features by key.
features=[

FeatureLookup (
table_name="feature_serving.travel_recommendations.hotel_prices",
lookup_key="hotel_id",

)s

FeatureFunction(
udf_name="feature_serving.travel_recommendations.hotel_total_price",
input_bindings={

"orice": “price",
ftax_rate": “tax_rate",
"num_days": "num_days"

1,
output_name="total_price",
inclu

)5

FeatureFunction(

udf_name="feature_serving.travel_recommendations.discount_price",
input_bindings={

"price": "total_price",
1,

output_name="final_price"

Create endpoint

status = fc.create_feature_serving_endpoint(name=hotel_endpoint_name, config = EndpointCoreConfig(servables=Servable(features=features)))

print(status)

FEATURE STORE
‘ SUMMIT
2023

Code Snippets - LangChain Tools

Define a tool to fetch user's budget preferences

The UserBudgetPreferenceTool will query the Feature & Function Serving endpoint to provide context data to LLM based on the user query

from langchain.tools <import BaseTool
from typing import Union

class UserBudgetPreferenceTool(BaseTool):
name = "User Budget Preference Feature Server"
description = "Use this tool when you need to fetch current users travel budget preferences."

def _run(self, user_id: str):
import requests
import pandas as pd
import json
import mlflow

endpoint_name = "user-budget-preference"

Replace the URL with your workspace URL

url = f"{url}/{endpoint_name}/invocations"

databricks_token = mlflow.utils.databricks_utils.get_databricks_host_creds().token

headers = {'Authorization': f'Bearer {databricks_token}', 'Content-Type': 'application/json'}
data = {
"dataframe_records": [{"user_id": user_id}]

}
data_json = json.dumps(data, allow_nan=True)
print(f"\nCalling Feature & Function Serving Endpoint: {endpoint_name}\n")
response = requests.request(method='POST', headers=headers, url=url, data=data_json)
if response.status_code != 200:

raise Exception(f'Request failed with status {response.status_code}, {response.text}')

return response.json()['outputs'][0]['avg_budget']

de

-

_arun(self, user_id: str):
raise NotImplementedError("This tool does not support async")

FEATURE STORE
‘ SUMMIT
2023

Code Snippets - Al bot with Feature & Function Serving

Setup an Agent which can fetch enterprise data from the Databricks Lakehouse using Feature & Function Serving

from langchain.agents import initialize_agent

Tool +imports

from langchain.agents import Tool

from langchain.utilities import GoogleSearchAPIWrapper

tools = [
UserBudgetPreferenceTool(),
HotelRetrievalTool(),
TotalPriceTool(),

]

initialize agent with tools

aibot = initialize_agent(
agent='chat-conversational-react-description’,
tools=tools,
1lm=11m,
verbose=True,
max_iterations=5,
early_stopping_method='force',
memory=conversational_memory

QEEE"\‘JRESTORE
Code Snippets - Al bot with Feature & Function Serving

Al chatbot that is created with context retrival tools, can perform much better than generic chatbot by providing context from Databricks Lakehouse
aibot_output = aibot('Plan a 7-day vacation to the Amalfi Coast around September for user id "a-456"."')

> Entering new AgentExecutor chain...

{
"action": "User Budget Preference Feature Server",
"action_input": "a-456"

}

Calling Feature & Function Serving Endpoint: user-budget-preference

Observation: 700.0
Thought:{
"action": "Hotels based on User Preference Vector Server",
"action_input": {
"user_id": "a-456",
"budget": 700.0
3
}
Observation: ["AB123', 'SW345', 'MJ564', 'QE278']
Thought: {
"action": "Total vacation price Feature Server",

FEATURE STORE
SUMMIT

Power of LLMs + Personalized context

Request Client

/

Hotel Booking Al Bot

a

User data
preferences, budget,
historical data ...

Databricks Lakehouse

Online Stores
vector search
KV lookup

~

Hotel data
prices, availability,
discounts, ...

Serving Endpoints
models, features,
functions

Custom Code

Vacation Planner

Accounting and
Discounts

LLMs

Training and Tuning
Prompts and Serving

Ny

