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Journey to Starting Fennel

● Quora: Quality/Abuse/Risk ML, followed by ML 
Platform

● Facebook: Ran group of ~100 ML engineers, saw 
cutting edge realtime ML in both recsys and 
risk/integrity

● Ran teams behind PyTorch, saw power of “beautiful” 
Python APIs

● Even in early 2022, no feature stores existed that 
lived up to my manifesto from 2017, so decided to 
build one with ex-Facebook team



Agenda
1. Intro to Fennel Abstractions (Walkthrough)

2. Fennel’s Unique Architectural Choices

3. Under the Hood: Streaming Engine



1. Intro to Fennel Abstractions 

(Walkthrough)



2. Fennel’s Unique Architectural Choices



● What: let users write real Python with Pandas, arbitrarily use any of their own 
Python code or Python ecosystem

● Why: meet users where they are, innovate at lower layers for perf, if needed

● Page from the PyTorch playbook - focus on a) ease of use b) interop with full 
Python ecosystem

● How: built in Rust, fast Python/Rust Interop by embedding Python interpreter, PEP 
684 (per sub-interpreter GIL)

1. Simplifying Authoring: Pure Python, no DSLs or PySpark



2.  Simplifying Realtime: Streaming first via Kappa Architecture

● What: No two separate batch/streaming subsystems. Everything is always 
streaming all the time, batch is just a special case

● Why: ML is rapidly going realtime, almost everyone has some streaming feature 
use cases

● Removes a ton of complexity and many interaction modes

● Exact same code works across batch & streaming

● How: in-house stream processing system written in Rust (vs Spark/Flink)



3.  Simplifying Realtime: Read/Write Separation, Features as 
Functions, Not Data



4. Simplifying Quality: Native Best-in-Class Quality Tooling

● What: whole suite of primitives 
for data/feature quality - both 
preventive & diagnostic

● Why: data/feature quality issues 
occur far too often, most don’t 
have the tooling to even realize 
that

● How: add all best practices - 
versioning, immutability, strong 
typing, data expectations, unit 
testing, drift monitoring etc. 

Fig 1: Data Expectations

Fig 2: Drift Monitoring



● What: only commercial feature store to not require customers to bring own K/V 
store or compute engine or metadata store etc.

● Why: lots of ops & cost issues in running each component. Much better 
experience AND ops AND cost via vertical integration. Shared dependencies also 
leads to operational confusion (e.g. who should autoscale a shared cluster?)

● How: Fennel brings up and manages everything that is needed. Zero dependency 
installation. 

● Makes our own surface area much wider/harder but better for customers.

5. Simplifying Ops: Deep Vertical Integration; Anti-Virtual



6. Simplifying Infosec: Thick Data Plane, Thin Control Plane

● What: like other modern data tools, Fennel is deployed as data plane 
inside customer cloud with a single control plane. Unlike others, data 
plane is thick enough to be nearly self-sufficient.

● Why: thick dataplane can handle full lifecycle of features ⇒ user data & 
feature code NEVER leave dataplane in the customer cloud

● How: Dataplane has all the machinery / services to be self-sufficient. Even 
console UI runs inside data plane so feature code doesn’t have to leave 
customer cloud. Control plan for only new code deployment and telemetry 
(and could go down without affecting any live traffic). 



3. Under The Hood: Streaming Engine



● Flink operators communicate with each other via RPC calls, even when 
deployed across machines ⇒ one node going down interrupts working of 
other nodes

● Fennel doesn’t do any sync communication across nodes. Either comms 
are within a node (so in-memory) or async mediated via Kafka.

● Kafka ⇒ natural handling of backpressure, backfilling etc. Nodes can go 
down without affecting other nodes

● Also gives exactly once processing “for free”

No Sync Communication, Full Shared Nothing Architecture



● Every streaming job is passed a handle to KV store implementing a generic 
interface (default RocksDB)

● Writes during an iteration are “buffered” in memory and applied together 
later in a batch atomically (in sync with exactly once transaction of 
input/output Kafka topics)

● Periodic backups (using EFS) of state store every few minutes

● Transaction markers for state store also stored in Kafka for quick recovery 
on machine failures

Management of State of Streaming Jobs



● Flink’s checkpointing model is “stop the world” which doesn’t work when 
stream topology changes often (e.g. when new features are written)

● Each job checkpoints itself independent of other jobs.

● Local SSD checkpoint - every second or so. Object store checkpoint: every 
few minutes

● Benefits: Any node of the system can go down any moment without 
creating any issue + fast recoveries

Continuous Distributed Checkpointing



OOMs are Structurally Impossible!

● Spark (in particular) and Flink (to some degree) have a tendency to run out 
of memory for feature engineering jobs

● With Fennel’s stream engine, no in-memory state of jobs – state lives on 
disks (storage systems often keep it warm in block/page cache, so not 
very costly to read/write either)

● No in-memory shuffle operations either. All shuffle is mediated via Kafka

● No GC (thanks to Rust) & very tight control on RAM => lower costs because 
memory is often the costliest component



Streaming Engine Is Time Aware!

● Unlike Spark/Flink, engine is aware of data schemas and each schema 
must have a unique event timestamp ⇒ engine is aware of event 
timestamps

● Natively handles watermarking, out of order handling, time window 
aggregations, etc.

● Enables point-in-time correct streaming joins, which is very very hard to 
get right with good efficiency



● No central scheduler - each worker node has its own “supervisor” that is 
responsible for some shard space

● Can horizontally scale by having higher number of shards and/or more 
supervisors

● Another design choice to avoid sync communication & single point of 
failure

No Central Scheduler; Horizontally Scalable



Thank you! Questions?

fennel.ai/docs

Nikhil Garg
nikhil@fennel.ai
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