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Deploying models
to production

is a data challenge
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Data challenges

1. Variety of data sources

2. Need for a variety of frameworks

3. Disconnect between experimentation /
training / production

4. Custom one-off pipelines to make data

available in real time

£ HOPSWORKS

Streaming
Kafka, Flink, Beam

Data Warehouse
Databricks, Snowflake, BigQuery..

Database
Oracle, MongoDB, GCP, AWS...

Files
CSV, Parquet...

Existing Features (Tables)
Databases, Data Warehouses

Graph Databases
Neo4j

Data Pipeline

Data Pipeline

Data Pipeline

Import

Connect

Data Pipeline
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Data challenges

i Data D Fil Model
Variety of data sources ata Dump as Files ode

Need for a variety of frameworks /_\‘ /_\‘
Disconnect between experimentation
= @ =
Data Engineer Data Scientist ML Engineer

[ training / production

4. Custom one-off pipelines to make data

Walls of Despair Walls of Despair

available in real time
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Data challenges

Variety of data sources

2. Need for a variety of frameworks
Disconnect between experimentation
[ training / production

4. Custom one-off pipelines to make

data available in real time
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Feature Store is an answer to these
challenges
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But tools only get you so far
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FTI PIPELINES

Transform data into Train models with Make predictions with
features/labels features/labels models & new features
— _ ..E |'-.| _'/o. . .
— - .. o=
- - 4:5 Data Feature Training Inference —» | : Predictions
_ - Pipeline Pipeline Pipeline :
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Make the pipelines independent, but also let them share outputs

Transform data into Train models with Make predictions with
features/labels features/labels models & new features
- = H 7 o~
- - l;:& Data Feature Training Inference '\‘;' / Predictions
- Pipeline Pipeline Pipeline ’
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Expectation Reality

Streaming
Kafka, Flink, Beam

Data Pipeline ()
Data Warehouse
Transform data into Databricks, Snowflake, BigQuery.. Data Pipeline O
features/labels

- - Database _/—{ Data Pipeline O
E Oracle, MongoDB, GCP, AWS...

T 4} Data Feature
- Pipeline I

- ﬁ Import

Files
CSV, Parquet...

) {ar) Connect I

Existing Features (Tables)

Databases, Data Warehouses
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Pick the best framework for your feature pipelines

Real-Time
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Python API

df |:;| pandasé Spor‘ll(? 3

fg

fs.get_or_create_feature_group(name="query_terms_yearly",
version=1,
description="Count of search term by year",
primary_key=["'year', 'search_term'],
partition_key=["'year'],
online_enabled=True,
expectation_suite=expectation_suite

)

fg.insert(df)

Link to docs; &
https://docs.hopsworks.ai/latest/user_guides/fs/feature_group/create =’) H o Ps wo R Ks
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Feature monitoring (NEW) £ HOPSWORKS
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Feature monitoring (NEW)

user_search_queries_fg.enable_feature_monitoring(
name="brand_name_monitoring"
feature_name="has_brand_name",
job_frequency="DAILY",
) .with_detection_window(
time_offset="1d",
row_percentage=60.1,
) .with_reference_window(
specific_value=td.statistics.feature.mean
) .compare_on(
metric="mean",
relative=True,
threshold=6.5,
) .save()
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Train models with
features/labels

IHI
Training
Pipeline

£ HOPSWORKS
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Need for speed
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Need for speed (Hopsworks 3.3)
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Pandas Read Throughput Benchmark in rows/sec - Higher is Better

B 5mrows [ 10m rows 20mrows [ 50m rows
4,000,000
3,000,000
2,000,000
1,000,000
0 1 1 | i —
Hopsworks Sagemaker Vertex Databricks*
*Databricks failed at 20m, 50m rows
Client

Pandas Pandas Read (rows/secs) 5m rows 10m rows 20m rows 50m rows

: Hopsworks 2,314,815 2,155,172 2,724,796 3,313,453

Sagemaker 155,328 170,358 167,364 202,053

- Vertex 38,011 54,672 77,289 172,247

Databricks* 85,807 27,666 - -

Feature Store

£ HOPSWORKS

www.featurestore.org/benchmarks
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Training Data Parquet Write in rows/sec - Higher is Better

B 5mrows [ 10m rows 20mrows [ 50m rows
4,000,000
Parquet Write
3,000,000 (rows/secs) 5mrows 10mrows 20mrows 50m rows
Hopsworks 952,381 2,057,613 2,724,796 3,770,739
2,000,000 Sagemaker 243,427 280,505 223,389 395,163
Vertex 54,831 87,665 161,186 332,094
1,000,000 Databricks* 308,642 403,714 237,897 *
0 =il .l *Databricks failed at 50m rows
Hopsworks Sagemaker Vertex Databricks*
Parquet Write (rows/secs) . *Databricks failed at 50m rows.
Client
- 11 times faster than Databricks (20m rows)
Feature Store 11 times faster than Vertex (50m rows)

9.5 times faster than SageMaker (50m rows)

Y
2 HOPSWORKS [ parquet  csv fies |

www.featurestore.org/benchmarks
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Inference Pipeline
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Make predictions with
models & new features

Inference — '(i” ) Predictions
Pipeline :

£ HOPSWORKS
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ye
Inference Pipeline

On-demand o
Request — transformations Model —> \;1 Predictions
Data (Pandas UDF) '

2 Hopsworks ] y
=" Feature Store J

Use Pandas UDFs to keep feature functions consistent (and performant)

between feature and inference pipeline
£ HOPSWORKS
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Online Feature Store Benchmark Results

Batch size=1 (lower is better) Batch size=500 (lower is better)
B p50 (ms) W p90(ms) [ p95(ms) M p99(Ms) W p50(ms) M po0(ms) [ p9s(ms) M p9g (ms)
30 500 =
4
400
20
260
ol 225 ‘ ‘
200 |
10 I
2 2 100 39 ’ ‘
=] LA j— 0 G S
a Hopsworks SageMaker Vertex Hopsworks SageMaker* Vertex*

: 2 %
Batch size 1 feature vector latencies Bateh:size:SOIRRnelax

*SageMaker and Vertex have a batch size limit of 100 records per request. Therefore for testing batch size 500 we ran 5 sequential requests, each with a batch size of 100.
In Vertex, we did not deserialize the returned features, so it's numbers should be slightly higher

www.featurestore.org/benchmarks

£ HOPSWORKS
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Data challenges —

Variety of data sources

2. Need for a variety of frameworks
Disconnect between experimentation /
training / production

4. Custom one-off pipelines to make data
available in real time

£ HOPSWORKS

FTI benefits

Source Agnostic

Framework agnostic

Unified architecture for experimentation /
training / production

Unified architecture for batch

and real time
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FTI benefits

Source Agnostic

Framework agnostic

Unified architecture for experimentation
[ training / production

Unified architecture for batch

and real time
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Serverless
A free sandbox for everyone




Over 3500 Users



What is Serverless?

Feature Store + Model Registry + Model Serving
Same User Experience & Same API
No Infrastructure to Manage
No Time Limit
Free Forever
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Community

Predicting Crime in San Francisco
L Serverless ML system that classifies the incident category based on its time and location in San

Francisco, US.
Source: https://github.com/Hope-Liang/ID2223Project

Predicting Electricity Prices in NYC
Prediction service that predicts the daily electricity demand in megawatthours in New York, USA.
Source: https.//github.col 0 hi/id2223-scalable-mi/tree/master/proj

Electricity Price Prediction for Sweden
Predicting the daily average energy price in Stockholm/SE3 for the upcoming 7 days.
Source: https://github.com/antonbn/ID2223Project

Double The Resolution Of Your Image

Doubling pictures' resolution.
Source: https://github.com/GianlucaRub/Scalable-Machine-Learning-and-Deep-Learning/tree/main/Project

News Articles For A Specified Sentiment
ML pipeline that predicts the sentiment of and recommends news articles based on their

headlines.
Source: https://github.com/torileatherman/news articles sentiment

serverless-ml.org

Educators

Energy Forecasting

https://github.com/iusztinpaul/energy-fore
casting

The Full Stack 7-Steps MLOps Framework
by Paul lusztin

Real World ML

https://www.realworldml.xyz
https://twitter.com/paulabartabajo

by Pau Labarta Bajo


https://github.com/iusztinpaul/energy-forecasting
https://github.com/iusztinpaul/energy-forecasting
https://www.realworldml.xyz/
https://twitter.com/paulabartabajo_

Great but...

Not Meant for
Enterprise

No SLAs - Shared Infrastructure
- Limited Quotas
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Hello, we are using Hopsworks as an option for a serverless
feature store as well as your MLOps capabilities. We are a
small-medium sized companies with expected API calls
of less than 20k/month. Can you provide more pricing
information for your service?

“Hi. I would like to know about increasing quotas pricing
| couldn't found on the site. Thanks.”

“l am currently working on a personal project and would
need more than the capability available with free
subscription. Kindly share available subscription plans with

”

me.

“We want to discuss about the increase
in quota.”

Hi, We're looking into options that would allow us to
produce reusable and consistent features across our
data science, analytics and MLOps teams, we would

like to avoid paying the infrastructure twice”

“Our feature store requirements are fairly simple and
we'd basically like a better Dev-X over BigQuery”
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To Introducing the

Hopsworks SaaS

Enterprise SLAs on a Managed platform, e2e.




What’s in the box?

The Feature Store
¢ * Model Registry & Model Serving
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Hopsworks Saa$S

Feature Store + Model Registry + Model Serving

From
USD 99 / Month

Beta users:
First Month Free

Join the Beta Now!

Enterprise SLAs

Up to 200gb Offline
Up to 5GB Online
5 Model Deployments

7

www.hopsworks.ai/saas
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To Introducing the

Multi-Region

Availability .




Multi-Region Availability




Multi-Region Availability



Thank youl!

Follow us on X (Twitter): @hopsworks

Meet us in person: https://hopsworks.ai/events
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