
Organized by

Uber’s Risk Knowledge Platform
Jean Cai, Senior Software Engineer
Kaavya Srinivasan, Software Engineer
Christopher Settles, Machine Learning Engineer

Uber

● Platform Overview
○ Motivation
○ Architecture
○ Feature Flow

● uFlow Feature Store
○ Batch Feature Computation
○ Near Real Time Feature Computation
○ Aggregator Computation
○ Real Time Feature Computation & Fetching

● uGraph Feature Store
○ Why graph?

■ Motivation
○ OLTP and OLAP graphs

■ Ingestion framework
○ Feature Computation through Cypher

● Machine Learning for Risk Assessment
○ Realtime predictions
○ Batch Feature Backfilling
○ Streaming Feature Backfilling
○ Powerful modeling

Agenda

Platform Overview

Motivation

Scalable, self-service Feature Engineering Platform for defining, computing,
and monitoring features for predictive decisioning.

Account TakeoverPayments Fraud MisconductPromotions Abuse

2015 2023

Architecture

Near
Real TimeBatch

Feature
Spec Knowledge Access

Real Time

uGraph

Decisioning Service

uFlow

OLTP

DB Write Log

OLAP
Time

Travel
Tool

Event Log

user takes trip,
user signs up, …

E2E Feature Engineering Flow

Explore and
Analyze Data Feature Engineering

ML Models

Rules

Actioning:
Ban, Warn, Error

Decisioning

Feature Iteration

uFlow Feature Store

Overview

 Near Real Time
Kafka
Flink

Batch
Hive

Spark

Realtime
RPCs

@prediction time

Compute
Feature Quality

- Correctness
- Distribution
- Completeness
- Freshness
- Anomaly Detection

Feature Catalog
- Definitions
- Metadata

 Manage

Consolidate

Self-serve

Scale

ML-ready

Feature
Store

Cassandra
Feature Lineage

- Tracing Up & Down Stream
- Feature Correlation

Feature LifeCycle
- Feature Creation
- Evaluation / Deprecation

Batch Feature Computation

Hive CassandraDispersal
Spark Query

Feature Level
Optimization

Delta
Change

TTL

Auto
BackfillMulti-Key

Partition

External-
Precompute

Source

Self-
Compute
Source

CI/CD

E2E Spec Driven

Near Real Time Computation

Extraction Transformation Loading

External Data
Source

 gRPC, Tchannel, Http, External DB…

Cassandra

Redis

Http

Tchannel

gRPC

Kafka

Kafka

Palette

uGraph

Uber ML platform

RPC
Fan Out

Early
Termination

Data Quality
Metrics

DLQ

Multi
Tenancy

Resource &
Computation
Decoupling

E2E Exactly Once
(Kafka)

Write Log

Backfill

Hive

Aggregator Computation

Hive

CassandraAggregator Aggregated
Features

Aggr Function:
Sum, Count,
Min, Max, …

Window:
Min, Hour, Day,
Year, LTD

Grain Size: minutes (NRT), hours/days (Batch)

Kafka

*LTD= Lifetime to Date

Real Time Computation & Fetching

99.99% Availability

Feature
Access Gateway 1

Cassandra

Gateway 2

Gateway N Gateway N+1

Fetch

Fetch

Feature
Update

Write

Kafka
Write Log

Hierarchical Feature Fetching

…

Cache

RPC

RPC

Real Time Service

Feature Write Back

uGraph Platform

Knowledge graph is a knowledge base that uses a graph-structured data
model to represent data

Why are knowledge graphs useful?
● Allows us to structure the unstructured data in the form of vertices

and edges
● Entities (vertices and edges) have a definition and a context
● Entities can belong to disparate domains of knowledge connected

through the underlying ontology/schema
● Easy to visualize, understand and query

Knowledge Graphs - What and Why?

“We are drowning in information and starving for
knowledge”

(Rutherford D. Rogers)

https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data

What is uGraph?

real-time and batch

facts(name, email,
trips taken, orders
placed)

derive insights

Feature computation
for ML

OLTP Ingestion Framework

Hive Tables

Kafka Topics
Spec-driven

Ingestion
Framework

Specs

uGraph
DB

Edge

Vertex

Streaming
Ingestion

Edge

Vertex

dbevents

● Intermediate graphs are stored for
recreation of features at a different
time than current time.

● Also used for recreation of reconciled
graph if something is amiss.

OLAP Ingestion Framework
● Reconciled graph gives a

wholistic view of entities in
current time.

● Feature graph is a smaller
graph with only interested
entities for ML usecases,
usually for past time.

Feature Computation Backfill for ML Training

● ML engineers often need to backfill
features for point in time
computation for model training.

● The feature computation backfill
system enables us to do this
seamlessly just through a spec

Cypher is supported as the graph query language. It is like SQL for
graphs, and was inspired by SQL so it lets you focus on what data you
want out of the graph

Graph Query Language (Cypher)

MATCH (u:User)-[hc:HAS_PHONE_NUMBER]->(p)<-[]-(u2)

Vertex with label
and variable name

Edge with label
and variable name

Vertex with only
variable name

(label is inferred)

Edge without label
or variable name

(labels are inferred)

Graph Query Language (Cypher) Contd..

MATCH (u:User)-[hc:HAS_PHONE_NUMBER]->(t)<-[]-(u2)
WHERE u.uuid = ‘{{user_uuid}}’
WITH u.uuid as user_uuid,
u2.uuid as uuid
RETURN user_uuid, count(DISTINCT uuid) AS
connected_users_share_same_phone_count

Querying Framework

● Requests are parsed and
converted to a query plan for
optimal execution.

● Only specific entities are fetched
for feature computation(subgraph)
and features are computed on top
of the returned graph

Machine Learning for Risk Assessment:
Providing Real Time Predictions

Providing real time Predictive power - Architecture

Near
Real Time

Batch

Feature
Spec Knowledge Access

Real Time

uGraph

Decisioning Service

uFlow

OLTP

DB Write Log

OLAP
Time
Travel
Tool

Event Log

user requests trip,
user signs up, etc…

Michelangelo

Payment Fraud Model

Account Takeover
Model

+ More models

Providing real time Predictive power - Training data

Decisioning ServiceEvent Log

user requests trip,
user signs up, etc…

Michelangelo

Payment Fraud Model

“Calculate
probability of
payment resulting in
fraud loss”

ts User UUID Payment UUID email_domain cart_total_usd

27653 1234-5678 4532-7135 @good.com $57.23

31512 4321-8765 5612-8424 @bad.xyz $323.76

label

Good

Fraud

Basis Data

* Artificial data

Providing real time Predictive power - Naive model training

ts User UUID Payment UUID email_domain cart_total_usd

27653 1234-567
8

4532-7135 @good.com $57.23

31512 4321-876
5

5612-8424 @bad.xyz $323.76

label

Good

Fraud

What can we do to make it better?

Enrich model with more features! Starting with batch…

What might the model learn?

Machine Learning for Risk Assessment:
Batch Feature Backfill

Feature Backfilling - Basis data entities

ts User UUID Payment UUID email_domain

27653 1234-567
8

4532-7135 @good.com

31512 4321-876
5

5612-8424 @bad.xyz

label

Good

Fraud

Primary entities:
The fields in a request that identify
a primary actor involved in request

Secondary entities:
Fields in a request shared
among multiple primary actors

Batch Feature Backfilling

ts email_domain Payment UUID

27653 @good.com 4532-7135

31512 @bad.xyz 5612-8424

Expanded
Training

Set

Basis
Table Entity Feature Tables

Basis
Table

1000s of
additional features

* Artificial data

Computed Entity
Features

Batch Feature Backfilling - Gaps
… but when do you need realtime feature engineering?

Ask questions like…
1. count user trips in last 24 hours
2. user_last_used_phone_number
3. new entity values observed

(graph)
4. count users linked by phone #
5. count banned users linked by phone #

Any feature engineering on primary entities

ts user_trips_24h user_last_known
_phone_number

email_domain users_linked_by_
phone

banned_users_lin
ked_by_phone

27657 7 867-5309 @new.tld 10 9

Problem types:
- Account Takeover
- New User Fraud
- Marketplace

Abuse
- Safety

* Artificial data

Machine Learning for Risk Assessment:
Streaming Feature Backfill

Streaming Feature Backfill - Attribute & Aggregation Feature

date ts user_last_known_phone_number

2023-09-0
1

27657 867-5309

For attribute features, we can
use temporal join to stitch their
values to our training set.

date ts email_domain email_domain_
batch_trips_1d

email_domain_
nrt_trips_1d

2023-09-01 27657 @new.tld 0 20

For both attribute and aggregation
features, data must exist in offline
storage.

NRT aggregation feature can help us fill in
the gaps that batch computation would
miss!

Streaming Feature Backfill - Persisting NRT changes to DB write log

Near
Real Time

Batch

Feature
Spec

Knowledge Access

Real Time

uGraph uFlow

OLTP

DB Write Log

OLAP
Time
Travel
Tool

DB Write Log
persists all changes
to C* features

Extraction Transformation Loading

External
Data Source

 Tchannel, Http, Internal DB… Cassandra

Kafka Write log

Write log is
transformed into a
change log

* Value of RPC is not in historical data so therefore,
value written to C* is not recoverable otherwise

Streaming Feature Backfill - Transforming the write log into a change log
For streaming attribute features, only change
data is needed
❖ Drop redundant writes

❖ Optimized Change Data Capture
solution
➢ Much smaller HDFS storage costs

For streaming aggregation (velocity) features, all
writes are needed.

Pre-aggregation:
- Reduce qps to C*
- Reduce change log storage
- When latency requirement can be

relaxed

Streaming Feature Backfill - Using the Time Travel Tool

❖ Create Basis Table
❖ Specify join keys & feature groups to time travel
❖ Tools creates ML training data w/ batch & streaming

features

ML with basis +
batch
features

ML with basis +
near real time
features

Near Real Time Backfilled FeaturesBasis Data Batch Backfilled Feature ValuesBasis DataInput Output
Time
Travel
Tool

10s - 100s of features 1000s+ features

Supports:
● Time travel on DB change log (for RPC

features)
● Time travel on hive ingested kafka data

End result:

Thank you

