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Platform Overview



Motivation

Scalable, self-service Feature Engineering Platform for defining, computing, 
and monitoring features for predictive decisioning.
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E2E Feature Engineering Flow
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uFlow Feature Store



Overview
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Batch Feature Computation
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Near Real Time Computation
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Aggregator Computation

Hive

CassandraAggregator Aggregated 
Features 

Aggr Function:
Sum, Count, 
Min, Max, …

Window:
Min, Hour, Day, 
Year, LTD 

Grain Size:  minutes (NRT), hours/days (Batch)

Kafka

*LTD= Lifetime to Date



Real Time Computation & Fetching
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uGraph Platform



Knowledge graph is a knowledge base that uses a graph-structured data 
model to represent data

Why are knowledge graphs useful?
● Allows us to structure the unstructured data in the form of vertices 

and edges
● Entities (vertices and edges) have a definition and a context
● Entities can belong to disparate domains of knowledge connected 

through the underlying ontology/schema
● Easy to visualize, understand and query

Knowledge Graphs - What and Why?

“We are drowning in information and starving for 
knowledge”

(Rutherford D. Rogers)

https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data


What is uGraph?

real-time and batch

facts(name, email, 
trips taken, orders 
placed)

derive insights

Feature computation 
for ML
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● Intermediate graphs are stored for 
recreation of features at a different 
time than current time. 

● Also used for recreation of reconciled 
graph if something is amiss. 

OLAP Ingestion Framework
● Reconciled graph gives a 

wholistic view of entities in 
current time. 

● Feature graph is a smaller 
graph with only interested 
entities for ML usecases, 
usually for past time.



Feature Computation Backfill for ML Training

● ML engineers often need to backfill 
features for point in time 
computation for model training. 

● The feature computation backfill 
system enables us to do this 
seamlessly just through a spec



Cypher is supported as the graph query language. It is like SQL for 
graphs, and was inspired by SQL so it lets you focus on what data you 
want out of the graph

Graph Query Language (Cypher)

MATCH (u:User)-[hc:HAS_PHONE_NUMBER]->(p)<-[]-(u2)

Vertex with label 
and variable name

Edge with label 
and variable name

Vertex with only 
variable name 

(label is inferred)

Edge without label 
or variable name 

(labels are inferred)



Graph Query Language (Cypher) Contd..

MATCH (u:User)-[hc:HAS_PHONE_NUMBER]->(t)<-[]-(u2)
WHERE u.uuid = ‘{{user_uuid}}’
WITH u.uuid as user_uuid,
u2.uuid as uuid
RETURN  user_uuid, count(DISTINCT uuid) AS 
connected_users_share_same_phone_count



Querying Framework 

● Requests are parsed and 
converted to a query plan for 
optimal execution.

● Only specific entities are fetched 
for feature computation(subgraph) 
and features are computed on top 
of the returned graph



Machine Learning for Risk Assessment:
Providing Real Time Predictions



Providing real time Predictive power - Architecture
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Providing real time Predictive power - Training data

Decisioning ServiceEvent Log

user requests trip, 
user signs up, etc…

Michelangelo

Payment Fraud Model

“Calculate 
probability of 
payment resulting in 
fraud loss”

ts User UUID Payment UUID email_domain cart_total_usd

27653 1234-5678 4532-7135 @good.com $57.23

31512 4321-8765 5612-8424 @bad.xyz $323.76

label

Good

Fraud

Basis Data

* Artificial data



Providing real time Predictive power - Naive model training

ts User UUID Payment UUID email_domain cart_total_usd

27653 1234-567
8

4532-7135 @good.com $57.23

31512 4321-876
5

5612-8424 @bad.xyz $323.76

label

Good

Fraud

What can we do to make it better?

Enrich model with more features! Starting with batch… 

What might the model learn?



Machine Learning for Risk Assessment:
Batch Feature Backfill



Feature Backfilling - Basis data entities

ts User UUID Payment UUID email_domain

27653 1234-567
8

4532-7135 @good.com

31512 4321-876
5

5612-8424 @bad.xyz

label

Good

Fraud

Primary entities: 
The fields in a request that identify 
a primary actor involved in request

Secondary entities: 
Fields in a request shared 
among multiple primary actors



Batch Feature Backfilling

ts email_domain Payment UUID

27653 @good.com 4532-7135

31512 @bad.xyz 5612-8424

Expanded 
Training 

Set

Basis 
Table Entity Feature Tables

Basis 
Table

1000s of 
additional features

* Artificial data

Computed Entity 
Features



Batch Feature Backfilling - Gaps
… but when do you need realtime feature engineering? 

Ask questions like…
1. count user trips in last 24 hours
2. user_last_used_phone_number
3. new entity values observed

(graph)
4. count users linked by phone # 
5. count banned users linked by phone #

Any feature engineering on primary entities

ts user_trips_24h user_last_known
_phone_number

email_domain users_linked_by_
phone

banned_users_lin
ked_by_phone

27657 7 867-5309 @new.tld 10 9

Problem types:
- Account Takeover
- New User Fraud
- Marketplace 

Abuse
- Safety

* Artificial data



Machine Learning for Risk Assessment:
Streaming Feature Backfill



Streaming Feature Backfill - Attribute & Aggregation Feature

date ts user_last_known_phone_number

2023-09-0
1

27657 867-5309

For attribute features, we can 
use temporal join to stitch their 
values to our training set.

date ts email_domain email_domain_
batch_trips_1d

email_domain_
nrt_trips_1d

2023-09-01 27657 @new.tld 0 20

For both attribute and aggregation 
features, data must exist in offline 
storage.

NRT aggregation feature can help us fill in 
the gaps that batch computation would 
miss!



Streaming Feature Backfill - Persisting NRT changes to DB write log
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Streaming Feature Backfill - Transforming the write log into a change log
For streaming attribute features, only change 
data is needed
❖ Drop redundant writes

❖ Optimized Change Data Capture 
solution
➢ Much smaller HDFS storage costs

For streaming aggregation (velocity) features, all 
writes are needed.

Pre-aggregation:
- Reduce qps to C*
- Reduce change log storage
- When latency requirement can be 

relaxed



Streaming Feature Backfill - Using the Time Travel Tool

❖ Create Basis Table
❖ Specify join keys & feature groups to time travel
❖ Tools creates ML training data w/ batch & streaming 

features

ML with basis + 
batch
features

ML with basis + 
near real time 
features

Near Real Time Backfilled FeaturesBasis Data Batch Backfilled Feature ValuesBasis DataInput Output
Time 
Travel 
Tool

10s - 100s of features 1000s+ features

Supports:
● Time travel on DB change log (for RPC 

features)
● Time travel on hive ingested kafka data

End result:



Thank you


