
Organized by

Wayfair’s Mercury Platform:
Scaling ML Applications via Programmatic
Feature Definition, Build, and Maintenance
Alexander Hristov, Staff ML Scientist, Wayfair

● Prioritize maintainability and efficiency over flexibility in defining new features.

● Improve model performance by increasing access to signals

● Define, build, consume, and maintain features as a group, rather than individually.

Key Idea for Mercury:

● Prioritize maintainability and efficiency over flexibility in defining new features.

● Improve model performance by increasing access to signals

● Define, build, consume, and maintain features as a group, rather than individually.

Key Idea for Mercury:

Part 1: Motivation

Why Trade Flexibility for Efficiency
in Feature Platform Design

All ML systems make tradeoffs.

Which ML system would you prefer to deploy?

It depends on …

- Team: size and maturity

- Resources: budget and elasticity

- Problem value, i.e. d$/dRMSE

- What else could you be doing?
- Wide teams: 0-> 1, then onto another task
- Tall teams: Iterate on the same problem

In other words,
The more predictive model is not always better.
Success comes from managing tradeoffs.

Which ML system would you prefer to deploy?

● More focus on “best case”
performance

● Hardest to provide cost, latency
guarantees at platform level

● Some changes hard to automate

Feature platform flexibility is an easily overlooked tradeoff.

Nonetheless, determining this tradeoff at platform level can help teams scale.

Very Flexible:

Make any feature in any way

Very Opinionated:

Features must follow specific approach

● More focus on “out of the box”
performance

● Stronger platform guarantees for
speed, cost

● Easier to automate

Be more opinionated, because ML team time is bounded.

1. Improve predictive performance obtained in bounded time, not the
hypothetical best-case performance.

2. Improve not just velocity to deploy new things, but also carrying
capacity, the ability to support more features and models well.

Mercury is strongly opinionated that users should define, build,
consume and maintain features as groups, not one at a time.

____________ for a product from sessions on _______ between ___________ days ago

of add-to-cart
avg. # per order
highest review

…

iOS app
desktop chrome

mobile safari
…

1 and 7
8 and 30

31 and 90
91 and 365

…

Many tabular features can share a pattern, creating a game of “fill in the blanks”

Features with the same template and source event can build together

Days since a customer last __________ a _______
Sofa
Desk

…

browsed for
added to cart

…

Mercury groups features hierarchically for performance and
maintainability

Entity Type

Feature Families

Feature Groups
of 6 to 1000 features

Programmatically
Generated Features

Product

Customer
Traffic by

Channel (V1)
Incidents (V1) Shipping (V1)

View Add-to
-Cart

Fav-
oriteOrder

ATC
iOS app
1-7 Days

Ago

ATC
Safari

8-30 Days
Ago

ATC
Chrome

31-90 Days
Ago

ATC
Android App

31-90 Days Ago

Mercury Feature Library

Ad UnitCustomer

Customer
Traffic By Geo

(V2)

For discovery and versioning, group features
sharing entity of analysis (Geo, Channel)

For performance, group features together
that share actions (atc, clicks, etc)

…

Programmatic features improve scale and performance in the long run.

1000s
Features Defined

Trillions
Feature Values

Computed Per Day

100s
Model objects deployed

use Mercury

Billions
Daily Model Predictions

20+
ML Applications using

Mercury

Disclaimer:
Scale isn’t free, comes with restrictions on latency and flexibility that may not make sense in all cases.

User Experience Improvements:
Predictive Performance: 2-9% for 3 preexisting applications that migrated to Mercury

Deploy Speed: 2-5x across multiple teams that used Mercury for new projects
Maintainability: One team reported saving >4 hrs per week per model pipeline

Part 2: Key Architecture Enablers

Defining and building thousands of features

High Level Logical Architecture

The paved path is highly opinionated, still able to support many applications

Key Lessons:
1. Pre-aggregation is an important step for improving maintainability and performance
2. Build features together and package as vectors
3. Emphasize reproducibility of feature computation
4. Drive reuse in multiple ways

Mercury preprocesses event logs to improve maintainability and performance

* Some dimension maps are not 1:1, so can only support 1 dimension per table
**All identifiers and numbers for illustrative purposes only and do not reflect real data.

Try to offload as much compute to this stage: schema standardization, analytic transforms, etc

Mercury preprocesses event logs to improve maintainability and performance

* Some dimension maps are not 1:1, so can only support 1 dimension per table
**All identifiers and numbers for illustrative purposes only and do not reflect real data.

Try to offload as much compute to this stage: schema standardization, analytic transforms, etc

Simple aggregation patterns are flexible enough to support many uses
… and different windows

Daily - Used for features with up to a 1 year lookback
window

Monthly - Used for features with a lifetime-lookback
window

Supports statistically sufficient aggregates for
Counts & Totals:
store a daily count or sum
Averages & Quantiles:
Store daily sum or %-tile and count
Ratios:
Store daily sums for the two values
Min & Max:
Store daily min and max

Monthly
Daily

Lifetime Feature Window

<365 Day Window

Being opinionated does however obstruct some features, like
- distinct counts
- sequence graph transforms

Features build all at once and are packaged into a sparse vector

Relative Position Values

- Reduces repeated scans
- All features within the group are “deployed”
- Vectors from multiple groups can be concatenated

**All identifiers and numbers for illustrative purposes only and do not reflect real data.

Example: Avg. price & total count of orders per supplier in (geo) over previous _#_ to _#_ days

Despite building features as large vectors, we are still have flexibility in how
models consume the features through SparkML

**All identifiers and numbers for illustrative purposes only and do not reflect real data.

Feature Group Concatenation

Model Specific Feature Selection
via spark VectorSlicer

Inference

Model B PipelineModel A Pipeline

Write-only data sources help with reproducible compute, tunable retention

Path towards online-offline consistency often depends on the contract with upstream data.

Append Only,
Latency Known

Non Reproducible
Sources

Build Features that need
Archival

Build Reproducible
Features

This then determines the requirements and capabilities of a feature platform, such as
- Library: Recipes to make features
- Engine: Turns recipes from the library into data
- Archival: Store feature values for training and offline eval
- Cache: Low latency retrieval.

Features can also be reused across entities
The feature compute steps are independent of entity map used

Business
Account

UserAccount

Device Ad Unit

Channel

Campaign

Option
Combination

Category

Product

HouseholdThere are many entity
hierarchies to which this can
apply:

**All identifiers and numbers for illustrative purposes only and do not reflect real data.

Succinctness, automated discovery, and lifecycle management are also
important drivers of reuse

300 lines of config can produce thousands of features,
compare that to 50 lines of sql for 1 feature.

It’s actually possible to review the code for features you use.

Not that you should actually have to.

We use scalable feature selection methods to help find predictive signals
from the library of thousands.

But as helpful as all that is, it’s expectations on maintenance of the features
that most influence users commitments to reuse features.

Part 3: Intuition

Not-So-Random Kitchen Sinks

To provide intuition for why Mercury is effective in practice we will rely on a
metaphor between a neural network and an enterprise data ecosystem.

“Random Kitchen Sinks” provide intuition for the effectiveness of programmatic
feature definitions.
Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in Learning. A. Rahimi and B. Recht. NIPS, 2008.

The paper shows random kitchen
sinks

1. Approximate best case
performance up to proven
bound

2. Train up to ~10x faster

“Random Kitchen Sinks” provide intuition for the effectiveness of programmatic
feature definitions.
Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in Learning. A. Rahimi and B. Recht. NIPS, 2008.

The paper shows random kitchen
sinks

1. Approximate best case
performance up to proven
bound

2. Train up to ~10x faster

Programmatic feature definitions can be thought of as a deterministic analog of
the random kitchen sink in the context of an enterprise data warehouse

OR

Currently excited to explore this approach as a complement to AutoML

“AutoML” frameworks have been powerful ways of helping
ML practitioners be more productive.

They provide tools to accelerate:

● Architecture / Hyperparameter Tuning
● Ensembling
● Feature Postprocessing

Winsorization
Imputation
Dimensionality Reduction
Polynomial Transformations

… but need to be given a dataframe.
AutoMLAuto-?

How do we make more of the data ecosystem available?

Thank you for your attention.
Questions?

And thank you to Mercury contributors:
- Jacob Baron
- Jesse Fredrickson
- Patrick Andruszkiewicz
- Vipul Dalsukrai
- Kurt Zimmer
- Minjoo Kim
- Masoum Mosmer

