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● Prioritize maintainability and efficiency over flexibility in defining new features.

● Improve model performance by increasing access to signals

● Define, build, consume, and maintain features as a group, rather than individually.
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Part 1: Motivation

Why Trade Flexibility for Efficiency 
in Feature Platform Design



All ML systems make tradeoffs.



Which ML system would you prefer to deploy?



It depends on …

- Team: size and maturity

- Resources: budget and elasticity

- Problem value, i.e. d$/dRMSE

- What else could you be doing?
- Wide teams: 0-> 1, then onto another task
- Tall teams: Iterate on the same problem

In other words, 
The more predictive model is not always better. 
Success comes from managing tradeoffs.

Which ML system would you prefer to deploy?



● More focus on “best case” 
performance

● Hardest to provide cost, latency 
guarantees at platform level

● Some changes hard to automate

Feature platform flexibility is an easily overlooked tradeoff. 

Nonetheless, determining this tradeoff at platform level can help teams scale.

Very Flexible:

Make any feature in any way

Very Opinionated:

Features must follow specific approach

● More focus on “out of the box” 
performance

● Stronger platform guarantees for 
speed, cost

● Easier to automate



Be more opinionated, because ML team time is bounded.

1. Improve predictive performance obtained in bounded time, not the 
hypothetical best-case performance.

2. Improve not just velocity to deploy new things, but also carrying 
capacity, the ability to support more features and models well.



Mercury is strongly opinionated that users should define, build, 
consume and maintain features as groups, not one at a time.

____________ for a product from sessions on _______ between ___________ days ago

# of add-to-cart
avg. # per order
highest review

…

iOS app
desktop chrome

mobile safari
…

1 and 7
8 and 30

31 and 90
91 and 365

…

Many tabular features can share a pattern, creating a game of “fill in the blanks”

Features with the same template and source event can build together

Days since a customer last __________ a _______
Sofa
Desk

…

browsed for
added to cart

…



Mercury groups features hierarchically for performance and 
maintainability 

Entity Type

Feature Families

Feature Groups 
of 6 to 1000 features 

Programmatically
Generated Features

Product

Customer 
Traffic by 

Channel (V1)
Incidents (V1) Shipping (V1)

View Add-to
-Cart

Fav- 
oriteOrder

# ATC 
iOS app 
1-7 Days 

Ago

# ATC 
Safari

8-30 Days 
Ago

# ATC 
Chrome

31-90 Days 
Ago

# ATC 
Android App

31-90 Days Ago

Mercury Feature Library

Ad UnitCustomer

Customer 
Traffic By Geo 

(V2)

For discovery and versioning, group features 
sharing entity of analysis (Geo, Channel) 

For performance, group features together 
that share actions (atc, clicks, etc)

…



Programmatic features improve scale and performance in the long run.

1000s
Features Defined

Trillions
Feature Values 

Computed Per Day

100s
Model objects deployed 

use Mercury 

Billions
Daily Model Predictions

20+
ML Applications using 

Mercury 

Disclaimer:
Scale isn’t free, comes with restrictions on latency and flexibility that may not make sense in all cases.

User Experience Improvements: 
Predictive Performance: 2-9% for 3 preexisting applications that migrated to Mercury

Deploy Speed: 2-5x across multiple teams that used Mercury for new projects
Maintainability: One team reported saving >4 hrs per week per model pipeline



Part 2: Key Architecture Enablers

Defining and building thousands of features



High Level Logical Architecture

The paved path is highly opinionated, still able to support many applications

Key Lessons:
1. Pre-aggregation is an important step for improving maintainability and performance
2. Build features together and package as vectors
3. Emphasize reproducibility of feature computation
4. Drive reuse in multiple ways



Mercury preprocesses event logs to improve maintainability and performance

* Some dimension maps are not 1:1, so can only support 1 dimension per table
**All identifiers and numbers for illustrative purposes only and do not reflect real data. 

Try to offload as much compute to this stage: schema standardization, analytic transforms, etc
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Simple aggregation patterns are flexible enough to support many uses
… and different windows

Daily - Used for features with up to a 1 year lookback 
window

Monthly - Used for features with a lifetime-lookback 
window

Supports statistically sufficient aggregates for
Counts & Totals: 
store a daily count or sum
Averages & Quantiles: 
Store daily sum or %-tile and count
Ratios: 
Store daily sums for the two values
Min & Max:
Store daily min and max

Monthly
Daily

Lifetime Feature Window

<365 Day Window

Being opinionated does however obstruct some features, like
- distinct counts
- sequence graph transforms



Features build all at once and are packaged into a sparse vector 

Relative Position Values

- Reduces repeated scans 
- All features within the group are “deployed”
- Vectors from multiple groups can be concatenated

**All identifiers and numbers for illustrative purposes only and do not reflect real data. 

Example: Avg. price & total count of orders per supplier in     (geo)    over previous _#_ to _#_ days



Despite building features as large vectors, we are still have flexibility in how 
models consume the features through SparkML 

**All identifiers and numbers for illustrative purposes only and do not reflect real data. 

Feature Group Concatenation

Model Specific Feature Selection 
via spark VectorSlicer

Inference

Model B PipelineModel A Pipeline



Write-only data sources help with reproducible compute, tunable retention

Path towards online-offline consistency often depends on the contract with upstream data. 

Append Only,
Latency Known

Non Reproducible 
Sources

Build Features that need 
Archival

Build Reproducible 
Features

This then determines the requirements and capabilities  of a feature platform, such as
- Library: Recipes to make features
- Engine: Turns recipes from the library into data
- Archival: Store feature values for training and offline eval
- Cache: Low latency retrieval.



Features can also be reused across entities
The feature compute steps are independent of entity map used

Business 
Account

UserAccount

Device Ad Unit

Channel

Campaign

Option 
Combination

Category

Product

HouseholdThere are many entity 
hierarchies to which this can 
apply:

**All identifiers and numbers for illustrative purposes only and do not reflect real data. 



Succinctness, automated discovery,  and lifecycle management are also 
important drivers of reuse

300 lines of config can produce thousands of  features,
compare that to 50 lines of sql for 1 feature.

It’s actually possible to review the code for features you use.

Not that you should actually have to.

We use scalable feature selection methods to help find predictive signals 
from the library of thousands.

But as helpful as all that is, it’s expectations on maintenance of the features 
that most influence users commitments to reuse features.



Part 3: Intuition 

Not-So-Random Kitchen Sinks



To provide intuition for why Mercury is effective in practice we will rely on a 
metaphor between a neural network and an enterprise data ecosystem.



“Random Kitchen Sinks” provide intuition for the effectiveness of programmatic 
feature definitions.
Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in Learning. A. Rahimi and B. Recht. NIPS, 2008.

The paper shows random kitchen 
sinks

1. Approximate best case 
performance up to proven 
bound

2. Train up to ~10x faster
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Programmatic feature definitions can be thought of as a deterministic analog of 
the random kitchen sink in the context of an enterprise data warehouse

OR



Currently excited to explore this approach as a complement to AutoML

“AutoML” frameworks have been powerful ways of helping 
ML practitioners be more productive.

They provide tools to accelerate:

● Architecture / Hyperparameter Tuning
● Ensembling
● Feature Postprocessing

Winsorization
Imputation
Dimensionality Reduction
Polynomial Transformations

… but need to be given a dataframe.
AutoMLAuto-?

How do we make more of the data ecosystem available?



Thank you for your attention. 
Questions?

And thank you to Mercury contributors:
- Jacob Baron
- Jesse Fredrickson
- Patrick Andruszkiewicz
- Vipul Dalsukrai
- Kurt Zimmer
- Minjoo Kim
- Masoum Mosmer


