WeChat’'s Feature Compute
Engine for Real-time

Recommender Systems

Jin Shang, Software Engineer, Tencent WeChat

FEATURE STORE

~ SUMMIT Organized by g’g’ HOPSWORKS

2023

FEATURE STORE
SUMMIT
2023

Who am|?

Present:

® Software Engineer @ WeChat's ML Platform Team
® Lead developer of our vectorized feature compute engine

® Active community contributor of Apache Arrow

Previous:

® SWE Intern @ Google Cloud Vertex Al Feature Store
® Mastersin Computer Science @ CMU

Google
Cloud

Al

APACHE

ARROW

»

Carnegie
Mellon

University

Background

FEATURE STORE
~ SUMMIT
2023

FEATURE STORE
SUMMIT
2023

Machine learning at WeChat

® Recommender Systems

O Ads, Articles, Videos, Live Streams, Feeds, Search Ranking...
@® Trust and Safety

O Fraud Detection

O Content Moderation
® Internal Usage

O Code Generation

O Documentation Chatbot

%

O W

Articles Videos

WeChat Pay

FEATURE STORE
SUMMIT
2023

Features Engineering For Recommendation

® Offline feature generation SApPACQHEr‘k

O Fixed-interval Batch jobs: Apache Spark
O Event Triggered Streaming Jobs: Apache Flink

@® Online feature extraction

Flink

O Transform data in DB to features for models
O OLAP-like operations on small batches: <1000 items per request
O Requires low latency: <50ms for a request

O Facebook F3 / OpenMLDB Online Engine

FEATURE STORE
SUMMIT
2023

Recommender System: Online Feature Extraction

Operations that are impossible or expensive offline:

@ Filtering: Eliminate invalid/abnormal values

® Joining: Cross user and item features online to save key space

@® Sorting and Aggregation: # of request < # of actions

@® Numerical transformations: Different parameter for each model
O Discretization

O Hashing

FEATURE STORE
SUMMIT
2023

Recommender System: Online Feature Extraction

Workload pattern:

@® Each request contains a single user and multiple items
@® The same set of features are computed for each item

@® Features have fixed computation logic once deployed

® The same computation tasks are repeated over and over
Conclusion:

@ Perfect scenario for vectorization and compilation

Technical Details

FEATURE STORE
~ SUMMIT
2023

FEATURE STORE
SUMMIT
2023

Apache Arrow A R R 0W>>>

@® De facto standard for in memory columnar (vector) data layout

@® Most widely used vector format in data analysis world
O Ad hoc analysis: PyArrow, Pandas, Polars...

O OLAP engine: DuckDB, Velox, Datafusion... Parquet

Cassandra

O ML data: Huggingface Dataset, Ray Dataset

@® A complete toolbox for vector data: -

Impala

O Primitive, List, Map, Struct, Union, Extensions...

O 10, Serialization, Compute...

Parquet

O C, C++, Rust, Python, Go, Java, Matlab, Julia, JS...

Cassandra Kudu

Feature Representation with Apache Arrow

@® Each feature value is represented as an Arrow Array or Scalar

User Item
Scalar Feature Scalar Primitive Array
Sequence Feature Primitive Array List Array

® Item ratings: [9, 8, 9, null, 7], representing the value for item 1-5
O Arrow arrays natively support null values

® Item tags: [[“action”, “horror”], [“romance”], [], null, [“comedy”]]
O Nuanced difference between empty list and null list

O Number of features: 0 vs null

FEATURE STORE
SUMMIT
2023

User
Sequence

Aggregate

Feature Computation with Apache Arrow

@® \We provide common operators such as Join, Sort, Math
Expressions...

® User define a feature by combining operators B @
@® Several ways to achieve SIMD vectorization on Arrow array
Y
O LLVM JIT Engine Join
@@
O Arrow native compute functions
) \4
O Compiler auto-vectorization ’ Hash

O Hand-written SIMD intrinsics

FEATURE STORE
SUMMIT
2023

LLVM JIT Engine

Gandiva Expression Compiler

COMPILER INFRASTRUCTURE

@® Developed by Dremio, maintained by Arrow team [cices Code | ‘ Fut Gode I Hard Code)
® Provides arithmetic functions pre-compiled to LLVM IR | '
® Combine functions into expression at LLVM IR level Hp— T ¥
® [everages LLVM for various optimizations ’ MR ’ ‘ HMR J ‘ M ‘
O loop vectorization
O function in-lining —
O instruction combination VM Nodde |] Optimization
O Y
@® Used for Projection and Filtering e

FEATURE STORE
SUMMIT
2023

Gandiva Expression Compiler

LLVM IR for “(a+b)*c” on ArmV8 Neon instruction set

vector.body: ; preds = %vector.body, %vector.ph
%1lsr.iv4042 = bitcast double* %1sr.iv40 to <2 x double>*
%1sr.iv4547 = bitcast double* %lsr.iv45 to <2 x double>*
%1sr.iv5052 = bitcast double* %1sr.iv50 to <2 x double>*
%1sr.iv5557 = bitcast double* %1sr.iv55 to <2 x double>*

%21 = fadd <2 x double> %wide.load, %wide.load28

%22 = fadd <2 x double> %wide.load27, %wide.load29

%»scevgep58 = getelementptr <2 x double>, <2 x double>* %lsr.iv5557, i64 -1
%wide.load30 = load <2 x double>, <2 x double>* %scevgep58, align 8, l!alias.scope !16
%wide.load31 = load <2 x double>, <2 x double>* %lsr.iv5557, align 8, l!alias.scope !16
%23 fmul <2 x double> %21, %wide.load30

%24 = fmul <2 x double> %22, %wide.load31

FEATURE STORE
SUMMIT

Arrow Compute Functions

Natively supported vectorized functions

@® Gandivais very fast, but...

O
O
O

Hard to develop and maintain
Hard to debug

Only used for simple operations such as math expressions

® Arrow Compute

O

O
O
O

C++ functions that are dynamically dispatched at runtime
Provides vectorized kernels for many functions
Supports various complex operations, e.g. Sort, Aggregate

All functions are exported to Python, easier to experiment with

Function
Dispatcher

A

[C++ Kernel }

FEATURE STORE
SUMMIT
2023

Arrow Compute Functions

Common complex operations e.g. Sort, Aggregate, Join...

>>> import pyarrow as pa >>> user_history_ids = pa.array([999, 777, 555])
>>> import pyarrow.compute as pc >>> user_history_watch_time = pa.array([30, 50, 10])
>>> a = pa.array([5, 3, 4, 1, 2]) >>> request_items = pa.array([111, 222, 777, 888, 999])
>>> sorted_indices = pc.sort_indices(a) >>> join_index = pc.index_in(request_items,
>>> pc.take(a, sorted_indices) user_history_ids)
<pyarrow.lib.Int64Array object at @x127a5d1le@> >>> request_items_user_watch_time =
[pc.take(user_history watch_time, join_index)
1, >>> request_items_user_watch_time
2, <pyarrow.lib.Int64Array object at ©x127a5d4e0>
3, [
4, null,
5 null,
] 50,
>>> pc.sum(a) null,
<pyarrow.Int64Scalar: 15> 30

FEATURE STORE
SUMMIT
2023

Arrow Compute Functions

We have contributed several functions to Arrow

cumulative_sum/prod/min/max

®
. _ @ js8544 #14
. ro”lng_sum/mln/max '~ 60 commits 5,478 ++ 1,828 --
@® adjoin_as_list
® pairwise_diff °
® integer round functions Mo aee. adad
. arithmetic for temporal ’[ypes July October 2023 April July October
®

FEATURE STORE
. SUMMIT
= 2023

Compiler Auto Vectorization

Arrow arrays are always stored in contiguous memory
Gandiva/Compute too heavy for some light weight operations
Rely on compilers to automatically vectorize

GCC: -ftree-vectorize

Clang: Enabled by default

Example: Null bitmap bitwise and

for (int64_t i = 0; i < length; ++i) {
arrl[i] &= arr2[i];

}

FEATURE STORE
SUMMIT
2023

Handwritten SIMD with Intrinsics

Call SIMD intrinsic functions provided by Intel

® Compilers fail to vectorize complex operations, e.g. hashing

@® Manual vectorization by calling SIMD intrinsics

template <int shift> template <int shift>
__attribute_ ((always_inline)) inline uint64 Rotate(uint64 val) { __attribute__ ((always_inline)) inline __m256i AVXRotate(__m256i val) {
// Avoid shifting by 64: doing so yields an undefined result. // Avoid shifting by 64: doing so yields an undefined result.
if constexpr (shift == @) { if constexpr (shift == @) {
return val; return val;
} else { } else {
constexpr int kLeftShift = 64 - shift; constexpr int kLeftShift = 64 - shift;
return ((val >> shift) | (val << kLeftShift)); auto val_sr_reg = _mm256_srli_epi64(val, shift);
} auto val_sl_reg = _mm256_s1li_epi64(val, kLeftShift);
b return _mm256_or_si256(val_sr_reg, val_sl_reg);
}

FEATURE STORE
SUMMIT
2023

Performance Issue for Small Batch Size

@® Sometimes scenarios only have very few candidate items
O Online training with one sample
O Push notifications
Vectorized operators perform badly when batch size is small
@® Array overhead
O Need to store array metadata
O Arrow array always aligned at 64 bytes
® \ectorization overhead
O Compute more values than needed

® Compute Function overhead

FEATURE STORE
SUMMIT
2023

Native Operators

@® Provide a native implementation for all operators Feature Request

O Each item feature is stored separately as single values

@® Dynamically dispatch to Native (<8) and Vectorized (>=8) Dispatcher
ltem>=8
Consistency is ensured: ltem <8
® Full test coverage i !
O Operator level unit tests ’ Native ’ { Vectorized }
Engine Engine

O Engine level E2E tests

® Daily pipeline to examine diffs from raw feature logs

FEATURE STORE
SUMMIT
2023

Operator Fusion

@® Overhead for each operator call

O Virtual dispatch L
O Input validation and copy 7,, " " Filter |
O Output memory allocation Sort (Sort J
@® Most operators can be fused with Projection & Filtering %r | Projector |
—r—
® Three operations done in one operator call Bl
® Example: R EE——

log(x+1) ORDERED BY x WHERE x>0 AND x<100
PROJECTOR SORT FILTER

Performance Benchmark

FEATURE STORE
~ SUMMIT
2023

FEATURE STORE
SUMMIT
2023

Performance benchmark

@® \Whenitem num < 8, native is better
At 64, vectorized is 6x faster
At 128, vectorized is 10x faster

Overhead amortized for larger batch

@® CPU usage down by 50% on deployment

48 — HFF - — Mk

48

36

24

12

LATENCY/(MS)

120

100

oo
o

(o))
(@)

40

20

—o—Vectorized -w—Native

2 4 8 16 32 64 128
OF ITEMS

Q&A

FEATURE STORE
v SUMMIT
2023

