
Organized by

Chronon, Airbnb's open source
feature engineering framework
Pengyu Hou, Software Engineer, Airbnb

● Why Chronon?
● What is Chronon?
● Point in time correct
● Life before Chronon
● Architecture
● Examples
● Takeaways + Call to action

Agenda

Why Chronon?

● Feature definition in multiple places
● Online offline inconsistency
● Slow backfills ⇒ slow iteration speed
● Repetitive glue code for the pipelines
● Duplicate work across multiple orgs

Why Chronon?

What are some common challenges?

What is Chronon?

Chronon is an open-source platform
enabling ML practitioners to efficiently

develop, deploy, manage, and monitor ML
data pipelines.

ML Applications

Unstructured Structured

Image
classification

Chat apps

NLP

Object
detection

FraudCustomer LTVCredit scores Ads

Personalized search

● Most of the data is available at once: full image
● Features are automatically extracted from few

(often one) data stream:
○ words from a text
○ pixels from an image

● Data arrives steadily as user interacts with the
platform

● Features extracted from many event streams:
○ logins
○ clicks
○ page views, etc

● Iterative manual feature engineering

of data sources

Journey to open source

● 20172022: iterated over four internal versions
● 2022: private beta partnered with Stripe

○ Fully adopted within Stripe
○ They are also in this summit

● 2024: announced open source
○ Stripe is the co-maintainer

Journey to open source

What is Point in Time Correct?
PITC?

Point in time correct feature values

F1

F2

0 5 7

3

Feature values of a sum operation

Time

4

2 4

Label L

Pred P1

12

3

L

Training data set

U
se

r b
eh

av
io

r &
 b

us
in

es
s

pr
oc

es
se

s
P

ro
du

ct
P

ro
bl

em

❌

❌ ❌

Point in time correct feature values

F1

F2

0 5 7

3

Feature values of a sum operation

Time

4

2 4

Label L

Pred P1

16

5

L

Training data set

U
se

r b
eh

av
io

r &
 b

us
in

es
s

pr
oc

es
se

s
P

ro
du

ct
P

ro
bl

em

P2

❌

● Works well in local
● Performs poorly in prod

Point in time correct matters

What are some common symptom?

● Works well in local
● Performs poorly in prod

Data leakage example:

A house price prediction model can be based on:

● Rooms, location, size, age, etc

But not:

● Offers received
● Buyerʼs info

Point in time correct matters

What are some common symptom?

What was life like
before Chronon?

Replicate offline -> online

Program
Language of
the serviceSQL

Log and wait

Code changes

Wait

Deployment

03

01 02

How can Chronon address
consistency without waiting for months?

Chronon Way

● Single Python config file

● Same Scala compute
engine for both envs

● Take care of the infra
orchestration

Chronon Architecture

Feature Management System

Feature
Definition

Serving
Pipeline

Training
Pipeline

Model
Training Set

Online
Scoring
Vector

Consistency

Fast Backfills - Data Warehouse

Low Latency Serving - Online Environment

Aggregation
Library

Examples

Feature definition (in Python!)
v1 = GroupBy(

 source = source,

 keys = ["user_id"],

 aggregations = [Aggregation(

 name = "page_view_sum" ,

 operation = Operation.SUM,

 windows = [

 Window(length = 7, timeUnit = TimeUnit.DAYS),

 Window(length = 14, timeUnit = TimeUnit.DAYS),

 Window(length = 1, timeUnit = TimeUnit.MONTH),

 Window(length = 1, timeUnit = TimeUnit.YEAR),

],

 inputColumn = "page_view_count"

)]

)

Operation: functions i.e. SUM, AVG, LAST

Aggregation: Operation + Windows

GroupBy: Aggregation over a single Source

Windows: for time-series data

Joins

v1 = LeftOuterJoin(

 left=leftSource, # (user_id, timestmaps)

 rightParts=[

 JoinPart(

 group_by=page_views.v1,

 keyMapping={‘user_id’:’host_id’},

),

 JoinPart(

 group_by=profile_change.v2,

),

],

)

● Join

○ What is the <aggregation statistic> for <key> from
<time A> to <timestamp>?

● Challenges

○ Data skew e.g. bots

○ Computing with midnight accuracy can be faster

●

Fun fact

One user achieved:
250 lines of code → 1000 features

New Functionalities

● Why?

○ Computing acceptance ratio =
accept_sum / requests_sum

● Challenges

○ Uniform API - online & offline

○ Online Latency

Derivations

● Why?

○ Computing average price of
ice-creams a user viewed in the
last 14 days

○ Require transformations and
aggregations along with
denormalization

● Challenges

○ online & offline consistency

○ Online Latency

Real time chaining features

Key Takeaways

● Provides declarative language to define features once
for both online and offline features.

● Lambda architecture to achieve online offline
consistency and low latency serving

● Windowed operation supported
● Operations: currently 15 aggregation operation

○ Can be extended easily

Key takeaways:

Call to actions

● Star the repo and fork it:
https://github.com/airbnb/chronon

● Kick starter: report issues or ideas to git issues
● Discord: https://discord.gg/GbmGATNqqP

Call to actions:

https://github.com/airbnb/chronon
https://discord.gg/GbmGATNqqP

Additional Resources

● Chronon — A Declarative Feature Engineering Framework
● Chronon, Airbnb’s ML Feature Platform, Is Now Open Source
● Shepherd: How Stripe adapted Chronon to scale ML feature

development
● https://www.chronon.ai/
● https://github.com/airbnb/chronon/

Additional Resources:

https://medium.com/airbnb-engineering/chronon-a-declarative-feature-engineering-framework-b7b8ce796e04
https://medium.com/airbnb-engineering/chronon-airbnbs-ml-feature-platform-is-now-open-source-d9c4dba859e8
https://stripe.com/blog/shepherd-how-stripe-adapted-chronon-to-scale-ml-feature-development
https://stripe.com/blog/shepherd-how-stripe-adapted-chronon-to-scale-ml-feature-development
https://www.chronon.ai/
https://github.com/airbnb/chronon/

Thank you

