
Organized by

The Snowflake Schema Data Model
comes to Feature Stores

Javier de la Rúa Martínez
Research Engineer
Hopsworks
javier@hopsworks.ai

The Offline store is an open Lakehouse

● Historical data and contextual information
● Time-series data
● Support for complex analytical queries. e.g., temporal queries

The Online store enables real-time and LLMRAG inference pipelines

● Low-latency feature vector retrieval
● Real-time transformation functions

The Vector index can improve LLMRAG inference pipelines

● Similarity search on vector embeddings

Recap!💡Feature Stores extend the Lakehouse

AI Lakehouse 

Lakehouse 

The Offline store is an open Lakehouse

● Historical data and contextual information
● Time-series data
● Support for complex analytical queries. e.g., temporal queries

The Online store enables real-time and LLMRAG inference pipelines

● Low-latency feature vector retrieval
● Real-time transformation functions

The Vector index can improve LLMRAG inference pipelines

● Similarity search on vector embeddings

Recap!💡Feature Stores extend the Lakehouse

AI Lakehouse 

Lakehouse 

Row-oriented Store

Vector database

Columnar Store

Common Non Real-Time AI Lakehouse

Operational
Database
Stream (CDC)

Event Bus
Stream

Lakehouse Table Low Latency
Database

Offline Store Online Store

sync

Vector Index

Vector
Databasesync

Delta Hudi Iceberg

Business Information

Business Events

Common Non Real-Time AI Lakehouse

Operational
Database
Stream (CDC)

Event Bus
Stream

Lakehouse Table Low Latency
Database

Offline Store

sync

Delta Hudi Iceberg

Business Information
Dimensions

Business Events
Facts

3NF

Dimensional
Data Model

Online Store

Star Schema
- Duplicated columns are allowed
among dimension tables
- Redundancy is allowed for query
optimization
- No need for Nested Left Joins (query
engines not optimized for joins)

Common Non Real-Time AI Lakehouse

Operational
Database
Stream (CDC)

Event Bus
Stream

Lakehouse Table Low Latency
Database

Offline Store

sync

Delta Hudi Iceberg

Business Information
Dimensions

Business Events
Facts

3NF

Dimensional
Data Model

Online Store

Star Schema
- Duplicated columns are allowed
among dimension tables
- Redundancy is allowed for query
optimization
- No need for Nested Left Joins (query
engines not optimized for joins)

Feature Groups
 Shared Schema

Common Non Real-Time AI Lakehouse

Operational
Database
Stream (CDC)

Event Bus
Stream

Lakehouse Table Low Latency
Database

Offline Store

sync

Delta Hudi Iceberg

Business Information
Dimensions

Business Events
Facts

3NF

Dimensional
Data Model

Key-Value Store
- Performance for PK lookup
- It can accommodate the Star schema
- Scalability

Online Store

Star Schema
- Duplicated columns are allowed
among dimension tables
- Redundancy is allowed for query
optimization
- No need for Nested Left Joins (query
engines not optimized for joins)

Feature Groups
 Shared Schema

Common Non Real-Time AI Lakehouse

Operational
Database
Stream (CDC)

Event Bus
Stream

Lakehouse Table Low Latency
Database

Offline Store

sync

Delta Hudi Iceberg

Business Information
Dimensions

Business Events
Facts

3NF

Dimensional
Data Model

Key-Value Store
- Limited (if any) support for joins
- No Relational Data Model

Online Store

3NF ?

Star Schema
- Duplicated columns are allowed
among dimension tables
- Redundancy is allowed for query
optimization
- No need for Nested Left Joins (query
engines not optimized for joins)

Feature Groups
 Shared Schema

Whatʼs the best Data Model for a Feature Store?

Star schema

Snowflake
schema

OBT schema

Star schema

Snowflake
schema

OBT schema

Offline Tables Online Tables

❌

❔

✅

Business information:

● Credit card transactions

● Fraudulent transactions

● Aggregates computed on recent transaction activity

● Bank accounts

● Bank details

● Merchant details

Example💡Data Modeling for Credit Card Fraud Detection

Business information:

● Credit card transactions

● Fraudulent transactions 👈
● Aggregates computed on recent transactions

● Bank accounts

● Bank details

● Merchant details

1. Prediction Problem: Whether a credit card transaction is fraud or not → Label: fraud

Example💡Data Modeling for Credit Card Fraud Detection

Business information:

● Credit card transactions

● Fraudulent transactions 👈
● Aggregates computed on recent transactions

● Bank accounts

● Bank details

● Merchant details

1. Prediction Problem: Whether a credit card transaction is fraud or not → Label: fraud

2. Label Feature Group: Fact table → Credit card transactions

Example💡Data Modeling for Credit Card Fraud Detection

Transactions

N O P

Business information:

● Credit card transactions

● Fraudulent transactions

● Aggregates computed on recent transactions

● Bank accounts

● Bank details

● Merchant details

1. Prediction Problem: Whether a credit card transaction is fraud or not → Label: fraud

2. Label Feature Group: Fact table → Credit card transactions

3. Normalized Feature Groups: Dimensions tables → Bank details, Merchant details…

Example💡Data Modeling for Credit Card Fraud Detection

Merchant details

I J K

Accounts

L M

Bank details

C D E

CC Tx. Aggregates

F G H

Transactions

N O P

Merchant details

I J K

Bank accounts

P M

Bank details

C D E

Credit Card Tx Aggr.

F G H

Transactions

K M E F N A L

Star Schema Data Model

tx_id=123

Merchant details

I J K

Bank accounts

L M

Bank details

C D E

Credit Card Tx Aggr.

F G H

Transactions

K M C F N A L

Model

Star Schema Data Model in Online Inference Pipelines

AI-Enabled Application

A new transaction is being processed,
is it fraudulent?

The model needs the bank details,
merchant details, recent activity of the
credit card, ...

tx_id=123

Merchant details

I J K

Bank accounts

L M

Bank details

C D E

Credit Card Tx Aggr.

F G H

Transactions

K M C F N A L

Model

Star Schema Data Model in Online Inference Pipelines

AI-Enabled Application

A new transaction is being processed,
is it fraudulent?

The model needs the bank details,
merchant details, recent activity of the
credit card, ...

The transaction has not happened yet!
it’s not available at prediction time

cc_num=43
bank_id=9

merchant_id=12
account_id=4

tx_id=123

Merchant details

I J K

Bank accounts

L M

Bank details

C D E

Credit Card Tx Aggr.

F G H

Transactions

N A P

Model

Star Schema Data Model in Online Inference Pipelines

AI-Enabled Application

A new transaction is being processed,
is it fraudulent?

 Problem nº1

1. Application needs to enter all IDs

cc_num=43
bank_id=9

merchant_id=12
account_id=4

Merchant details

I J K

Bank accounts

L M

Bank details

C D E

Credit Card Tx Aggr.

F G H

Transactions

N A P

Model

Star Schema Data Model in Online Inference Pipelines

AI-Enabled Application

Mapping table

 Problem nº2

1. Application needs to enter all IDs

2. Extra ETL job(s) needed to maintain
mapping tables to resolve IDs

cc_num=43
merchant_id=12

tx_id=123

What if we add a mapping table?

cc_num=43
merchant_id=12

tx_id=123

Merchant details

I J K

Bank accounts

L M

Bank details

C D E

Credit Card Tx Aggr.

D E M F G H

Transactions

N A P

Model

Star Schema Data Model in Online Inference Pipelines

AI-Enabled Application

 Problem nº3

1. Application needs to enter all IDs

2. Extra ETL job(s) needed to maintain
mapping tables to resolve IDs

3. Extra ETL job(s) to maintain
denormalized table(s) with duplicated
features

Denormalized table

What if we denormalize the
Credit Card Tx. Aggr. table ?

Merchant details

I J K

Bank accounts

P M

CC Tx. Aggregates

E M F G H

Bank details

C D E

Transactions

K F N A L

What about the Snowflake Schema Data Model?

Snowflake Schema Data Model in Online Inference Pipelines

Bank accounts

P M

Merchant details

I J K

Bank details
C D E

CC Tx. Aggregates
E M F G H

Transactions

Model

cc_num=43
merchant_id=12

tx_id=123

Features are resolved
using nested joins

cc_num=43
bank_id=9

merchant_id=12
account_id=4

tx_id=123

K F N A P

AI-Enabled Application

Application does not need to enter all IDs

No extra ETL job(s) needed

Snowflake Schema Data Model in Hopsworks

Offline + Online + RonDB = Snowflake Schema

→ Support Relational Data Models SQL

→ Pushdown Left Nested Joins

→ Projection pushdown

→ Feature Groups shared schema

→ Hopsworks Feature Query
Service

 Nested temporal joins of Offline
tables to create Point-In-Time
correct training data

SIGMOD 2024 Research Paper - The Hopsworks Feature Store for Machine Learning - https://dl.acm.org/doi/pdf/10.1145/3626246.3653389

SIGMOD 2024 Research Paper - The Hopsworks Feature Store for Machine Learning - https://dl.acm.org/doi/pdf/10.1145/3626246.3653389

Pushdown Left Outer Joins in RonDB

Nested Left Outer Joins Snowflake Schema) are comparable to Left Outer Joins Star schema)

Online Feature Store Benchmarks → Feature Vector Retrieval

SIGMOD 2024 Research Paper - The Hopsworks Feature Store for Machine Learning - https://dl.acm.org/doi/pdf/10.1145/3626246.3653389
Feature Store Benchmarks - https://www.featurestore.org/benchmarks

Data Modeling with the Hopsworks Python API
labels = fs.get_feature_group("credit_card_transactions", version=1)
agg = fs.get_feature_group("aggregated_transactions", version=1)
merchant = fs.get_feature_group("merchant", version=1)
bank = fs.get_feature_group("bank_details", version=1)
account = fs.get_feature_group("account_details", version=1)

selection = labels.select_all()
.join(merchant.select_all())
.join(agg.select_all() # nested join

.join(bank.select_all())

.join(account.select_all()))

feature_view = fs.create_feature_view(name='cc_fraud', query=selection, labels=["is_fraud"])

df = feature_view.get_feature_vectors(
 entry=[{ # less serving keys needed

"cc_num": 1234567811112222,
"merchant_id": 212

 }])

selection = labels.select_all() # flat join
.join(merchant.select_all())
.join(agg.select_all())

 .join(bank.select_all())
.join(account.select_all())

df = feature_view.get_feature_vectors(
 entry=[{ # more serving keys needed

"cc_num": 123…, "bank_id": 23,
“account_id”: 45, "merchant_id": 212

 }])

Explore our latest
tutorials

Join our slack
community

Ask us any
questions

public-hopsworks.slack.com

28

