Enabling Low Latency Fraud
Detection with Real-Time
Feature Engineering

Tun Shwe, VP of Data @ Quix €

g l?zﬁ.._!;ﬁqsgzlfjrib LLMS Organized by :‘2’ HOPSWORKS

Agenda

e What is real-time feature eﬁgine |nJg?
e How do | build a real-time feature pipeline?

e How do | achieve low latency?

“ DATA FOR Al:
\ Wl REAL-TIME, BATCH, AND LLMS

“ DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

What is feature engineering?

Features are properties that provide predictive power for machine learning models
They are inputs for models during training

They are inputs for models during inference

They can be projected from data or computed, e.g. aggregations, vectors

“ DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Batch feature engineering

Dota Feature ML MOO‘QI
processor processor ‘tf‘ainir\g
Write [%4 -_7 7 Read Write (’/ij “; /\,‘ Read
\ Historical / \ Offline | /
| labelled 7} feature |

data store

“ DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Batch feature engineering

Dota Feature ML W\‘Of‘lel
quessor 'tr‘amms
Write 77, Z : D
Vi~ Y
\ Historical / \ Offline /
i lj\be"ed feature
J ata | .~ store

Feature stores decouple
feature engineering from models

v REAL-TIME, BATCH, AND LLMS

Historical labelled data

Transactions

{
"tid": "adb@a3cd4fd48e928bd61582978cfbbo",
"datetime": "2024-07-15 19:41:03",
"cc_num": "4561945063212434",
"category": "Restaurant/Cafeteria”,
"amount": "60.78",
"latitude": "33.7207",
"longitude": "-116.21677",
llcityll : IlIndioll’
llcountryll : IIUSII’
"fraud_label": @

"tid": "c9aa89860dPecdab893£f08£41785d0e7",
"datetime": "2024-07-16 15:31:26",
"cc_num": "4561945063212434",

"category": "Cash Withdrawal",

"amount": "200.00",

"latitude": "-6.48167",

"longitude": "106.85417",

"city": "Cibinong",

"country": "ID",

"fraud_label": 1

FEATURE STORE SUMMIT 2024
“ DATA FOR Al:
REAL-TIME, BATCH, AND LLMS

Historical labelled data

Transactions and profiles

{
"tid": "adb@a3cd4fd48e928bd61582978c£bbo", {
"datetime": "2024-07-15 19:41:03",
oo mumts "4561945063212434" , "cc_num": "4561945063212434"
gy o urant/Cateteria’, "cc_provider": "mastercard",
"latitude": "33'7207“1 "CC type“ : "cr‘edit n
"longitude": "-116.21677", " . . . "
"city": "Indio", cc_expiration_date": "02/26",
e "name": "Andrea Watson",

"birthdate": "1949-04-15",

{ n n, n n
"tid": "c9aa89860d@ecdab893f08£41785d0e7", age) 75 /
"datetime": "2024-07-16 15:31:26", "city" : "Collinwood",
"ce_num": "4561945063212434" " X v wien
"category": "Cash Withdrawal®, country_of_residence": "US
"amount": "200.00", }

"latitude": "-6.48167",
"longitude": "106.85417",
"city": "Cibinong",
"country": "ID",
"fraud_label": 1

\—rs

DATA FOR Al:

REAL-TIME, BATCH, AND LLMS

Features that could be computed

Total transaction amount in the last month

Total transaction amount per day of the week

Average transaction amount per week

Average spend per transaction category in the last month
Count of transactions made outside of city of residence
Count of transactions made in the past 24 hours

“ DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Real-time feature engineering

Data Feature ML wodel
producer processor infPerence
Produce Consume Write am) iR Read

© N
 feature

store

DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Real-time feature engineering (is challenging)

Data Feature ML wodel
producer processor infPerence
Produce Consume Write ay R Read

© N
~ feature

store

DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Quix (SJtuix
reams
Daota Streams Feature ML wmodel
producer processor inPererce
Produce Consume Write e,
\/ N i |7
feature |

29 HOPSWORKS
=10

FEATURE STORE SUMMIT 20

DATA FOR Al:

REAL-TIME, BATCH, AND LLMS

2#) Quix Quix

Streams Transaction Streams
Transaction it
PPOO(UCQ{‘ PFOQSSSOP
\
% \ ML wmodel
Produce Congume Write inPerence
\/ X \
Topic: transactions_raw yg//—‘i *tﬁ Read
% Online }/
kafka ki
| store

Topic: Progles__ro«w

£23) HOPSWORKS
[4
\ Write

#» Quix 7, Quix
Streams Profile Streams
feature

Pf‘oce$$0f‘

DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Enabling low latency through technology choices
Choose streaming data

e Use an online feature store for consistency and fast retrieval, e.g. Hopsworks
e Use a streaming message broker, e.g. Kafka, Redpanda, Pulsar
e Use stream processing for feature engineering, e.g. Spark, Flink, Quix Streams

DATA FOR Al:
\ PWIB REAL-TIME, BATCH, AND LLMS

Why is Kafka fast?

e Sequential I/O
e /ero copy principle

I o
I o
BEEAAA
I o
EEEEAE
I
OEEEE
0 o

Sequential IO

[[maf | e
OnEEm
[| [w] | |
EEEEN
EEECON
[[m] || |
L[]
EEEEC

https://jack-vanlightly.com/blog/2023/5/9/is-sequential-io-dead-in-the-era-of-the-nvme-drive

Image credit: Jack Vanlightly

[[m] | [
([T
[[| [m] |
[[m] T T
[[[[||
HEEEN
[[[m] | |
EEEEN

Random IO

Records have order guarantees
Kafka is an append-only log
Stored data is organised as

Sequential I/O

optimised for sequential I/O rather

than random |/O
Contrast that with databases that

contiguous blocks of memory
Modern drives and SSDs are
are optimised for random access

https://jack-vanlightly.com/blog/2023/5/9/is-sequential-io-dead-in-the-era-of-the-nvme-drive

OR Al:

, BATCH, AND LLMS

Zero copy principle

e Refers to the copying of data
between kernel and application
representations

e Does not mean making zero copies;
actually means minimising number
of copies

e Consumers read topic data directly
from the log file using direct
memory access (DMA)

e Doesn't apply when
encryption/SSL/TLS is used

No Zero Copy

disk read

-

=G
Socket buffer

-

a

i Backto
i application
i code

4

(* NIC buffer)

Response
sent out
the wire

disk read into
socket

Zero Copy

-

i Backto
1 application
i code

Image credit: Stanislav Kozlovski
https://2minutestreaming.beehiiv.com/p/apache-kafka-zero-copy-operating-system-optimization

Read buffer

Appends just file
descriptors (references)

NIC buffer

)
i Response
i sentout
| thewire
v

Legend

User -> Kernel
X~ mode context
switch

Kernel -> User
mode context
switch

———> DMA copy

=P CPU copy

https://2minutestreaming.beehiiv.com/p/apache-kafka-zero-copy-operating-system-optimization

“ DATA FOR Al:
REAL-TIME, BATCH, AND LLMS

Quix oo
Streams

from quixstreams import Application, State

Streaming DataFrames app = Application(broker_address="localhost:9092")

input_topic = app.topic("my_input_topic")
output_topic = app.topic("my_output_topic")

sdf = app.dataframe(topic=input_topic)

sdf["field_C"] = sdf.apply(lambda value: value["field_A"] + value["field_B"])

sdf = sdf.to_topic(output_topic)

n

if __name__ = "__main__
app.run(sdf)

",

“ DATA FOR Al:
REAL-TIME, BATCH, AND LLMS

°
Quix oo
Strea ms from quixstreams import Application, State

app = Application(broker_address="localhost:9092")

Stateful operations

input_topic = app.topic("my_input_topic")
output_topic = app.topic("my_output_topic")
def count(data: dict, state: State):

total = state.get('total', default=0)

total += 1

state.set('total', total)

data['total'] = total

sdf = app.dataframe(topic=input_topic)

sdf sdf.update(count, stateful=True)

sdf sdf.to_topic(output_topic)

"

if __name__ = "__main__
app.run(sdf)

“ DATA FOR Al:
REAL-TIME, BATCH, AND LLMS

°
Quix oo
Strea ms from quixstreams import Application

from datetime import timedelta

Stateful window operations
app.dataframe(input_topic)

(

sdf.apply(lambda value: valuel["total"])

.tumbling_window(timedelta(minutes=10), grace_ms=timedelta(seconds=10))
.sum()

.final()

FEATURE STORE SUMMIT 2024

DATA FOR Al:

REAL-TIME, BATCH, AND LLMS

Real-time sources Quix Platform Real-time sinks

. Applications & Servers Applications & Servers
. 9 Data 9 pecision

APIs & API gateways transformation 5

o APIs & API gateways
Quix

Streaming technologies N Streams Streaming technologies
QU|X CIOUd and QU|X Edge Data ingestion L4 Data L 4 Decision

% ',:: transformation engine %

I
o] o
& 3=- &P
Cache
Data at rest ML tooling
Databases Data lakes

Model development

Data warehouses Model training

github.com/quixio/quix-streams

q DATA FOR Al:
\ WM REAL-TIME, BATCH, AND LLMS

https://github.com/quixio/quix-streams
https://quix.io/slack-invite
http://linkedin.com/in/tunshwe

