Enabling Low Latency Fraud
Detection with Real-Time
Feature Engineering
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Agenda

e What is real-time feature eﬁgine |nJg?
e How do | build a real-time feature pipeline?

e How do | achieve low latency?
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What is feature engineering?

Features are properties that provide predictive power for machine learning models
They are inputs for models during training

They are inputs for models during inference

They can be projected from data or computed, e.g. aggregations, vectors
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Batch feature engineering
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Batch feature engineering
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Feature stores decouple
feature engineering from models
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Historical labelled data

Transactions

{
"tid": "adb@a3cd4fd48e928bd61582978cfbbo",
"datetime": "2024-07-15 19:41:03",
"cc_num": "4561945063212434",
"category": "Restaurant/Cafeteria”,
"amount": "60.78",
"latitude": "33.7207",
"longitude": "-116.21677",
llcityll : IlIndioll’
llcountryll : IIUSII’
"fraud_label": @

"tid": "c9aa89860dPecdab893£f08£41785d0e7",
"datetime": "2024-07-16 15:31:26",
"cc_num": "4561945063212434",

"category": "Cash Withdrawal",

"amount": "200.00",

"latitude": "-6.48167",

"longitude": "106.85417",

"city": "Cibinong",

"country": "ID",

"fraud_label": 1
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Historical labelled data

Transactions and profiles

{
"tid": "adb@a3cd4fd48e928bd61582978c£bbo", {
"datetime": "2024-07-15 19:41:03",
oo mumts "4561945063212434" , "cc_num": "4561945063212434"
gy o urant/Cateteria’, "cc_provider": "mastercard",
"latitude": "33'7207“1 "CC type“ : "cr‘edit n
"longitude": "-116.21677", " . . . "
"city": "Indio", cc_expiration_date": "02/26",
e "name": "Andrea Watson",

"birthdate": "1949-04-15",

{ n n, n n
"tid": "c9aa89860d@ecdab893f08£41785d0e7", age ) 75 /
"datetime": "2024-07-16 15:31:26", "city" : "Collinwood",
"ce_num": "4561945063212434" " X v wien
"category": "Cash Withdrawal®, country_of_residence": "US
"amount": "200.00", }

"latitude": "-6.48167",
"longitude": "106.85417",
"city": "Cibinong",
"country": "ID",
"fraud_label": 1
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Features that could be computed

Total transaction amount in the last month

Total transaction amount per day of the week

Average transaction amount per week

Average spend per transaction category in the last month
Count of transactions made outside of city of residence
Count of transactions made in the past 24 hours
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Real-time feature engineering
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Real-time feature engineering (is challenging)
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Enabling low latency through technology choices
Choose streaming data

e Use an online feature store for consistency and fast retrieval, e.g. Hopsworks
e Use a streaming message broker, e.g. Kafka, Redpanda, Pulsar
e Use stream processing for feature engineering, e.g. Spark, Flink, Quix Streams
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Why is Kafka fast?

e Sequential I/O
e /ero copy principle
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https://jack-vanlightly.com/blog/2023/5/9/is-sequential-io-dead-in-the-era-of-the-nvme-drive

Image credit: Jack Vanlightly
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Random IO

Records have order guarantees
Kafka is an append-only log
Stored data is organised as

Sequential I/O

optimised for sequential I/O rather

than random |/O
Contrast that with databases that

contiguous blocks of memory
Modern drives and SSDs are
are optimised for random access


https://jack-vanlightly.com/blog/2023/5/9/is-sequential-io-dead-in-the-era-of-the-nvme-drive
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Zero copy principle

e Refers to the copying of data
between kernel and application
representations

e Does not mean making zero copies;
actually means minimising number
of copies

e Consumers read topic data directly
from the log file using direct
memory access (DMA)

e Doesn't apply when
encryption/SSL/TLS is used
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https://2minutestreaming.beehiiv.com/p/apache-kafka-zero-copy-operating-system-optimization

Read buffer

Appends just file
descriptors (references)

NIC buffer

)
i Response
i sentout
| thewire
v

Legend

User -> Kernel
X~ mode context
switch

Kernel -> User
mode context
switch

———> DMA copy

=P CPU copy



https://2minutestreaming.beehiiv.com/p/apache-kafka-zero-copy-operating-system-optimization
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Quix oo
Streams

from quixstreams import Application, State

Streaming DataFrames app = Application(broker_address="localhost:9092")

input_topic = app.topic("my_input_topic")
output_topic = app.topic("my_output_topic")

sdf = app.dataframe(topic=input_topic)

sdf["field_C"] = sdf.apply(lambda value: value["field_A"] + value["field_B"])

sdf = sdf.to_topic(output_topic)

n

if __name__ = "__main__
app.run(sdf)

",
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°
Quix oo
Strea ms from quixstreams import Application, State

app = Application(broker_address="localhost:9092")

Stateful operations

input_topic = app.topic("my_input_topic")
output_topic = app.topic("my_output_topic")
def count(data: dict, state: State):

total = state.get('total', default=0)

total += 1

state.set('total', total)

data['total'] = total

sdf = app.dataframe(topic=input_topic)

sdf sdf.update(count, stateful=True)

sdf sdf.to_topic(output_topic)

"

if __name__ = "__main__
app.run(sdf)
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°
Quix oo
Strea ms from quixstreams import Application

from datetime import timedelta

Stateful window operations
app.dataframe(input_topic)

(

sdf.apply(lambda value: valuel["total"])

.tumbling_window(timedelta(minutes=10), grace_ms=timedelta(seconds=10))
.sum()

.final()




FEATURE STORE SUMMIT 2024

DATA FOR Al:

REAL-TIME, BATCH, AND LLMS

Real-time sources Quix Platform Real-time sinks

. Applications & Servers Applications & Servers
. 9 Data 9 pecision

APIs & API gateways transformation 5

o APIs & API gateways
Quix

Streaming technologies N Streams Streaming technologies
QU|X CIOUd and QU|X Edge Data ingestion L4 Data L 4 Decision

% ',:: transformation engine %

I
o ] o
& 3=- &P
Cache
Data at rest ML tooling
Databases Data lakes

Model development

Data warehouses Model training




github.com/quixio/quix-streams
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https://github.com/quixio/quix-streams
https://quix.io/slack-invite
http://linkedin.com/in/tunshwe

