

Enabling Low Latency Fraud Detection with Real-Time Feature Engineering

Tun Shwe, VP of Data @ Quix ᄽ

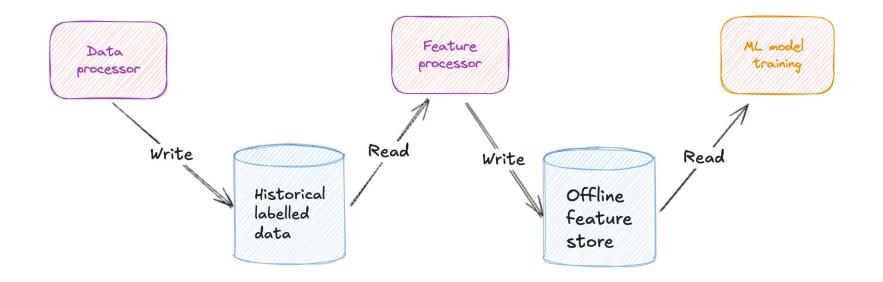
Agenda

- What is real-time feature engineering?
- How do I build a real-time feature pipeline?
- How do I achieve low latency?

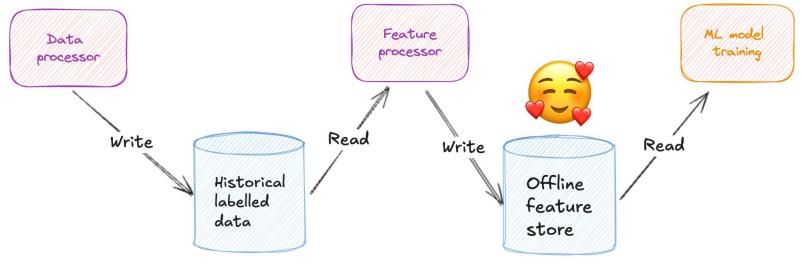
What is feature engineering?

- Features are properties that provide predictive power for machine learning models
- They are inputs for models during training
- They are inputs for models during inference
- They can be projected from data or computed, e.g. aggregations, vectors

Batch feature engineering



Batch feature engineering



Feature stores decouple feature engineering from models

Historical labelled data

Transactions

```
{
```

```
"tid": "adb0a3cd4fd48e928bd61582978cfbb0",
"datetime": "2024-07-15 19:41:03",
"cc_num": "4561945063212434",
"category": "Restaurant/Cafeteria",
"amount": "60.78",
"latitude": "33.7207",
"longitude": "-116.21677",
"city": "Indio",
"country": "US",
"fraud_label": 0
```

```
"tid": "c9aa89860d0ecdab893f08f41785d0e7",
"datetime": "2024-07-16 15:31:26",
"cc_num": "4561945063212434",
"category": "Cash Withdrawal",
"amount": "200.00",
"latitude": "-6.48167",
"longitude": "106.85417",
"city": "Cibinong",
"country": "ID",
"fraud_label": 1
```

{

}

```
}
```


Historical labelled data

Transactions and profiles

```
{
    "tid": "adb0a3cd4fd48e928bd61582978cfbb0",
    "datetime": "2024-07-15 19:41:03",
```

```
"datetime": "2024-07-15 19:41:03",
"cc_num": "4561945063212434",
"category": "Restaurant/Cafeteria",
"amount": "60.78",
"latitude": "33.7207",
"longitude": "-116.21677",
"city": "Indio",
"country": "US",
"fraud_label": 0
"tid": "c9aa89860d0ecdab893f08f41785d0e7",
"datetime": "2024-07-16 15:31:26",
"cc_num": "4561945063212434",
"category": "Cash Withdrawal",
"amount": "200.00",
"latitude": "-6.48167",
"longitude": "106.85417",
"city": "Cibinong",
"country": "ID",
```

```
"cc_num": "4561945063212434"
"cc_provider": "mastercard",
"cc_type": "credit",
"cc_expiration_date": "02/26",
"name": "Andrea Watson",
"birthdate": "1949-04-15",
"age": "75",
"city": "Collinwood",
"country_of_residence": "US"
```

{

}

}

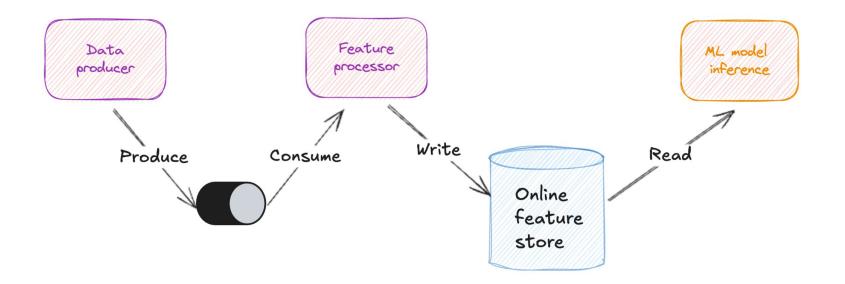
"fraud_label": 1

}

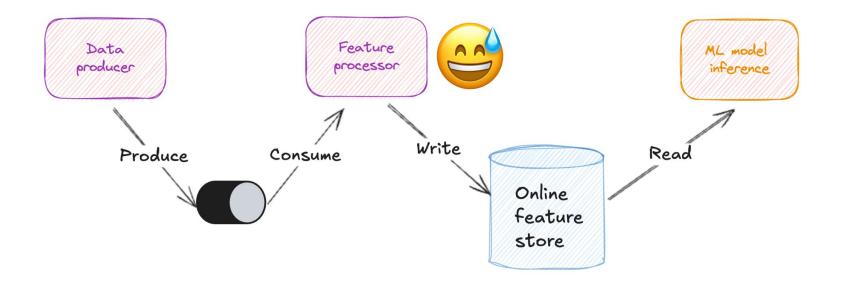
Features that could be computed

- Total transaction amount in the last month
- Total transaction amount per day of the week
- Average transaction amount per week
- Average spend per transaction category in the last month
- Count of transactions made outside of city of residence
- Count of transactions made in the past 24 hours

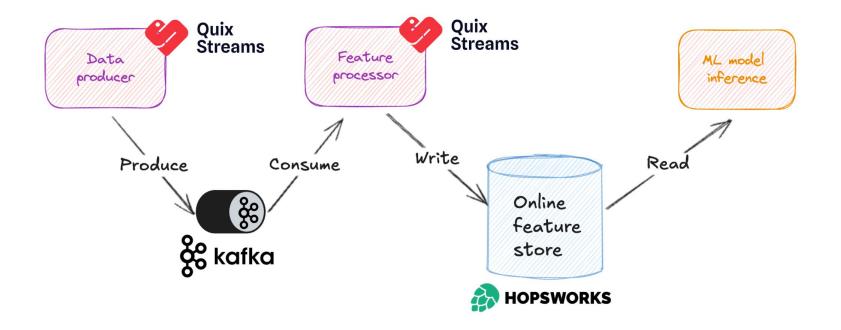
Real-time feature engineering

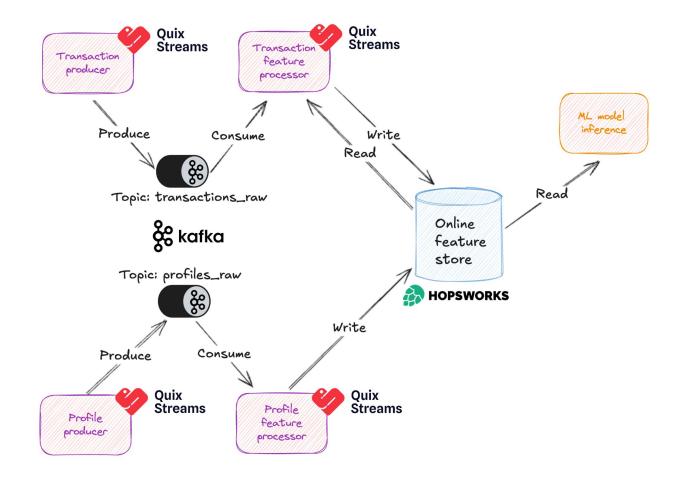


Real-time feature engineering (is challenging)



Real-time feature engineering (is easier these days)





Enabling low latency through technology choices

Choose streaming data

- Use an online feature store for consistency and fast retrieval, e.g. Hopsworks
- Use a streaming message broker, e.g. Kafka, Redpanda, Pulsar
- Use stream processing for feature engineering, e.g. Spark, Flink, Quix Streams

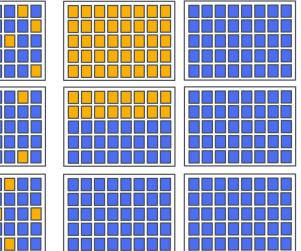
Why is Kafka fast?

- Sequential I/O
- Zero copy principle

Sequential I/O

- Records have order guarantees
- Kafka is an append-only log
- Stored data is organised as contiguous blocks of memory
- Modern drives and SSDs are optimised for sequential I/O rather than random I/O
- Contrast that with databases that are optimised for random access

Random IO



Zero copy principle

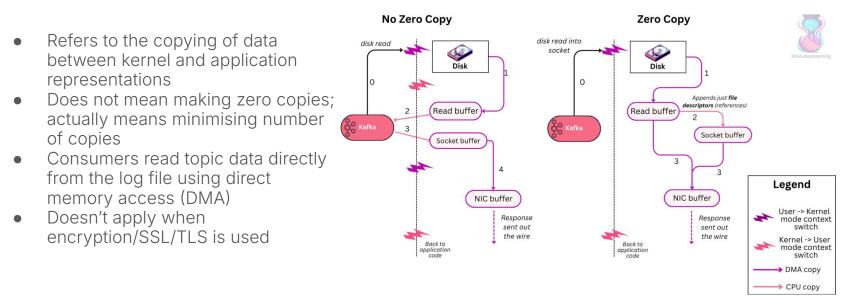


Image credit: Stanislav Kozlovski

https://2minutestreaming.beehiiv.com/p/apache-kafka-zero-copy-operating-system-optimization

Streaming DataFrames


```
from quixstreams import Application, State
```

app = Application(broker_address="localhost:9092")

```
input_topic = app.topic("my_input_topic")
output_topic = app.topic("my_output_topic")
```

```
# Create a Streaming DataFrame
sdf = app.dataframe(topic=input_topic)
```

```
sdf["field_C"] = sdf.apply(lambda value: value["field_A"] + value["field_B"])
```

sdf = sdf.to_topic(output_topic)

```
if __name__ = "__main__":
    app.run(sdf)
```


Stateful operations

•••

```
from quixstreams import Application, State
```

app = Application(broker_address="localhost:9092")

```
input_topic = app.topic("my_input_topic")
output_topic = app.topic("my_output_topic")
```

```
def count(data: dict, state: State):
   total = state.get('total', default=0)
   total += 1
   state.set('total', total)
   data['total'] = total
```

sdf = app.dataframe(topic=input_topic)

sdf = sdf.update(count, stateful=True)

sdf = sdf.to_topic(output_topic)

```
if __name__ = "__main__":
    app.run(sdf)
```


Stateful window operations

•••

from quixstreams import Application from datetime import timedelta

```
. . .
```

sdf = app.dataframe(input_topic)

```
sdf = (
```

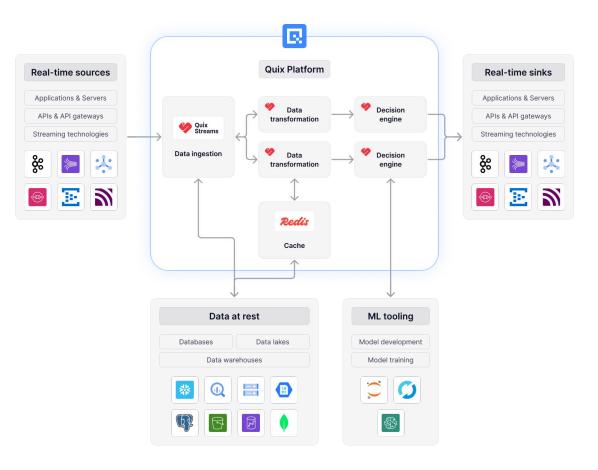
Extract the "total" field from the record sdf.apply(lambda value: value["total"])

Define a tumbling window of 10 minutes with a 10 second grace period .tumbling_window(timedelta(minutes=10), grace_ms=timedelta(seconds=10))

Specify the "sum" aggregation function to apply to values of "total"
.sum()

Emit results only when the 10 minute window has elapsed
.final()

Quix Cloud and Quix Edge



Thank you!

linkedin.com/in/tunshwe

github.com/quixio/quix-streams

quix.io/slack-invite