
Organized by 

Shepherd: High-Scale, Low-Latency 
Machine Learning with Flink at Stripe
Caio Camatta, Software Engineer, Stripe
Divya Manohar, Software Engineer, Stripe



ML algorithms are deployed across Stripe's product line, optimizing 
everything from backend processing to user interfaces.

One of the most popular use cases is fraud prevention.

● Blocking fraudulent transactions across all payment methods
● Stopping fraudsters from testing cards
● Detecting merchant fraud

Machine Learning at Stripe



● In 2022, partnered with Airbnb to adopt Chronon. 

● Designed Shepherd to accelerate feature development, which is crucial in 
adversarial spaces like fraud detection.

● Allows quickly feature iteration, backfill of historical data, automated 
deploys, and performance monitoring. 

● Supports both batch and streaming features with strict latency and 
freshness guarantees.

Shepherd: Stripeʼs feature engineering platform



Chronon: Defining a feature



Example Source definition
Amount of money charged on a credit card over the last day.



Example Source definition
Amount of money charged on a credit card over the last day.



Example Source definition
Amount of money charged on a credit card over the last day.

Spark SQL



Example GroupBy definition
Amount of money charged on a credit card over the last day.



Shepherd Architecture



Shepherd Architecture



Shepherd Architecture



Shepherd Architecture



Correctness: Online-Offline Consistency



Spark on Flink
To guarantee values computed online (in Flink) and offline (in Spark) are 
identical, we run the same Chronon code in both platforms.

Because Chronon supports Spark SQL, we need to run Spark inside of 
Flink. We achieve this by directly utilizing Catalyst, Sparkʼs query optimizer. 

Our custom CatalystUtil[1] class extracts optimized execution plans from 
Spark DataFrames and creates transformation functions that can be applied 
in Flink at low latency.

1 See CatalystUtil.scala in github.com/airbnb/chronon if you are curious.



Feature Freshness: Streaming Job Architecture



Default Chronon Online Architecture



Default Chronon Online Architecture



Stripeʼs Tiled Flink Architecture



Stripeʼs Tiled Flink Architecture



Tiled Architecture: Feature Serving Example
In this architecture, the Flink job processes the Source and pre-aggregates based on the 
GroupBy definition. For example, if the following events arrive in Kafka 

00:14 -> [“card_A”, 5.99]
00:45 -> [“card_A”, 30.00]
00:59 -> [“card_B”, 60.00]
01:12 -> [“card_A”, 40.00]
01:33 -> [“card_C”, 2.00]
01:34 -> [“card_C”, 34.00]

Flink would pre-aggregate the SUM and store the following data in the KV store:

[00:00, 01:00), “card_A” -> [35.99]
[00:00, 01:00), “card_B” -> [60.00]
[01:00, 02:00), “card_A” -> [40.00]
[01:00, 02:00), “card_C” -> [36.00]

Then, when serving feature values, the Fetcher will gather and merge the relevant tiles.



Tiled Architecture: Feature Serving Example
In this architecture, the Flink job processes the Source and pre-aggregates based on the 
GroupBy definition. For example, if the following events arrive in Kafka 

00:14 -> [“card_A”, 5.99]
00:45 -> [“card_A”, 30.00]
00:59 -> [“card_B”, 60.00]
01:12 -> [“card_A”, 40.00]
01:33 -> [“card_C”, 2.00]
01:34 -> [“card_C”, 34.00]

Flink would pre-aggregate the SUM and store the following data in the KV store:

[00:00, 01:00), “card_A” -> [35.99]
[00:00, 01:00), “card_B” -> [60.00]
[01:00, 02:00), “card_A” -> [40.00]
[01:00, 02:00), “card_C” -> [36.00]

Then, when serving feature values, the Fetcher will gather and merge the relevant tiles.



Low-Latency Feature Serving



The Chronon Fetcher Simplified)

For example, at 0130 AM, to compute our previously-defined feature 
for card_A, the service would fetch and merge the following data.

From the batch key-value store: 

[01:00 -1d, 00:00), “card_A” -> [200.00]

From the streaming key-value store: 

[00:00, 01:00), “card_A” -> [35.99]
[01:00, 02:00), “card_A” -> [40.00]

Final feature vector computed: [275.99]



The Chronon Fetcher Simplified)

For example, at 0130 AM, to compute our previously-defined feature 
for card_A, the service would fetch and merge the following data.

From the batch key-value store: 

[01:00 -1d, 00:00), “card_A” -> [200.00]

From the streaming key-value store: 

[00:00, 01:00), “card_A” -> [35.99]
[01:00, 02:00), “card_A” -> [40.00]

Final feature vector computed: [275.99]



The Chronon Fetcher Simplified)

For example, at 0130 AM, to compute our previously-defined feature 
for card_A, the service would fetch and merge the following data.

From the batch key-value store: 

[01:00 -1d, 00:00), “card_A” -> [200.00]

From the streaming key-value store: 

[00:00, 01:00), “card_A” -> [35.99]
[01:00, 02:00), “card_A” -> [40.00]

Final feature vector computed: [275.99]



The Shepherd Control Plane



Shepherd Onboarding Challenges

● Flink application provisioning
● Creation of a key-value store for streaming data

● Batch dataset registration for each Feature Group
● Shepherd API tier creation per use case for feature 

serving isolation

Number of open Jira tickets per day to register batch datasets



Storage Pools
Storage Pools contain information required to automatically provision Shepherd infrastructure, and 
are assigned to feature groups. This abstraction promotes feature serving isolation. 

Storage Pool assignment to a feature group



Storage Pools
Storage Pools contain information required to automatically provision Shepherd infrastructure, and 
are assigned to feature groups. This abstraction promotes feature serving isolation. 

Storage Pool assignment to a feature group Storage Pool configuration



Onboarding with the Shepherd Control Plane



Onboarding with the Shepherd Control Plane

● User CLI tooling to auto-generate 
○ Storage Pool configurations 
○ Deployment management
○ New Shepherd API tier



Onboarding with the Shepherd Control Plane

● User CLI tooling to auto-generate 
○ Storage Pool configurations 
○ Deployment management
○ New Shepherd API tier

● Daily pool deployments
● Single-tenant Flink apps



Onboarding with the Shepherd Control Plane

● User CLI tooling to auto-generate 
○ Storage Pool configurations 
○ Deployment management
○ New Shepherd API tier

● Daily pool deployments
● Single-tenant Flink apps
● Notifications 



Onboarding with the Shepherd Control Plane

● User CLI tooling to auto-generate 
○ Storage Pool configurations 
○ Deployment management
○ New Shepherd API tier

● Daily pool deployments
● Single-tenant Flink apps
● Notifications 
● Observability



Impact and Looking Forward

● Accelerated feature development for improved model performance

● High Availability via automated cross-region replication

● Growth in fraud loss savings

● Reduced toil for ML infrastructure teams



Thank you!
chronon.ai

stripe.com/jobs

caiocamatta@stripe.com
divyamanohar@stripe.com

mailto:caiocamatta@stripe.com
mailto:divyamanohar@stirpe.com

