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You will learn:
   ML at Uber

Impact

Two Tower Architecture

Architecture

Embeddings: What Are They Anyway…?

Training Challenges & Solutions



Efficient Marketplace
Matching, Routing, Dispatch, Pricing, Incentives

         Risk & Safety
ID verification, Fraud & Incident prevention

Personalization & Recommendation
Eats Feed, Search, Rides

Chatbots
Customer support, assistants, co-pilots
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Eats Homefeed ranking has 
a direct impact on users:

➔ 95% of users start their 
journey with Home Feed

➔ Majority of all orders 
originated on Home Feed 

However, we have minimum real 
estate & time to convert



Problem 1:  Lack of efficient retrieval model

We needed to retrieve the best stores out of thousands in just 50ms. 
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Problem 2: Existing technology could not scale (Deep Matrix 
Factorization (DeepMF)).

➔ Required 1,000+ city models globally (location based)
➔ Not reusable
➔ Very expensive to maintain (200,000 CPU hours per week -> 

continued to increase with # of cities)

⚠ Lower performance
⚠ High computing 
costs
⚠ Scaling blockers

Existing  solution



⭐ Long term solution = Embeddings ⭐

Champion use case = Eats Homefeed
➔ Proves the value and replaced DeepMF. 
➔ Retrieves personalized stores in 50ms, enabling customers to quickly & 

easily find items by selecting the best store for them. 
➔ We brought embeddings to Uber by building the platform capability so 

they can be scaled, reused, and transferred beyond our initial use case.
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✅ Better performance
✅ Lower computing costs
✅ Eliminated scaling blockers



<takeaway Embeddings condense down 
all features into a single vector>

Embeddings  are a type of feature for 
modern AI:

◆ Highly condensed vectors 
(<example>)

◆ Generally work for any entity 
such as eater, store, item, rider, 
location

◆ More natural for AL/ML tasks 
such as clustering
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Source: Neural Network Embeddings Explained | Author: Will Koehrsen

https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526


We needed a  large scale Embedding system  to 
Generate Embeddings for several entities at 

Uber



➔ Two Tower Model:
◆ A special way to learn embeddings 

via user behavior such as click and 
order 

◆ Eater tower: generates  embeddings 
for eater, rider offline or realtime

◆ Item tower: generates embeddings 
for store, grocery and place offline

◆ Best AI solution for retrieval stage in 
recommendation system 
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How to handle large cardinality
● Hundreds of millions eaters

○ Eater_id as a feature = huge  model  99% of the  
model size 😦

○ Cold start problem for new users & hash 
collision

○ Data can be flawed (i.e. incorrect cuisine tags)
● Millions Stores

○ Past engagements with stores as a proxy of the 
user_id

○ Layer sharing between store and eater tower
■ Transformers  learn eater’s list of 

engagement
● Resulting in:

○ 100x model size drop!! 😃
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How  to handle location based model

● Uber recommendation system is very location centric
○ Baseline model: city-wise deep-mf for restaurant 

retrieval

● Spatial indexing: geo base problem
○ find all available restaurants around eater by 

geolocation distance in real time (boundary control)
○ sort train data by geo-hash so that eaters and close 

restaurants are in the same batch
● LogQ Correction for In-batch Negatives

○ Create sufficient negatives using in-batch negatives: 
4k to 8K

○ Down-sample restaurants in a batch with LogQ: 
○ Q is sampling probability in a batch, w is the item 

weights in the whole data
●

*Includes mechanisms to bound time based constraints (5pm can deliver 
5miles; 10pm can deliver 10miles), allowing only available items. 



Overall Flow:
➔ Generate item/store embeddings and eater 

model in our online prediction service
➔ Index Item/Store embeddings in our 

retrieval/search engine
➔ Eater embedding computed from prediction 

service at realtime
➔ Search engine scores and fetches the most 

relevant stores/items for eater. 
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*Includes mechanisms to bound the problem through time based 
constraints (5pm can deliver 5miles; 10pm can deliver 10miles), allowing 
only available items. 



Embeddings as a Feature
Feature: data with predictive power that is 
used as input for models to make predictions.

Palette:  the industry’s first feature store (2017). 

One-stop shop for feature engineering needs
➔ Stores & manages features
➔ Serves feature data consistently for 

training & inference

Our feature Store powers Uber’s 
business
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1. Embedding as a feature in 
another  Tier 1-2 model such 
as DeepCVR, DeepNI 
(transferability )

2. Managed and used via palette 
service (servability )

3. Feature transformation and 
modeling can be 
standardized  (data type is 
array of double)
 

4. Feature exploration and 
engineering is simpler (one 
embeddings cover tens or 
hundreds of other regular 
features)
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Infra wins

➔ Single global model replaces thousands  city DeepMF models 
➔ Scalable to millions  of different types of users and multiple trips and sessions
➔ Decreased model training from 200,000 to 4800 core hours per week

V2.0 Global

       Single global model, eliminating thousands 
of individual models from DeepMF

Results
➔ top 20th percentile for improving mainfeed 

CVR, and homefeed CVR

Recall@100 Recall@200 Recall@300 Recall@400 Recall#500

Deep MF 0.4858  0.634   0.7198   0.7766  0.8165

TTE
0.7856 0.8742 0.9139 0.9364 0.9506
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Questions?


