

Embeddings @ Uber

Dhruva Dixith Kurra, Engineer, Uber

You will learn:

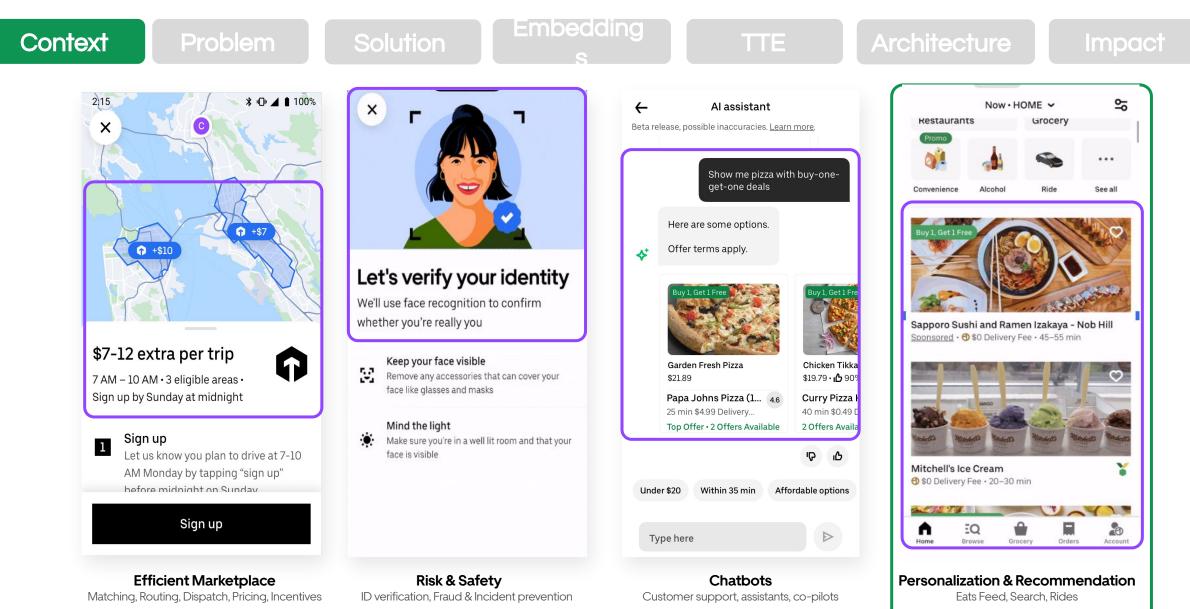
Embeddings: What Are They Anyway...?

Two Tower Architecture

Training Challenges & Solutions

Architecture

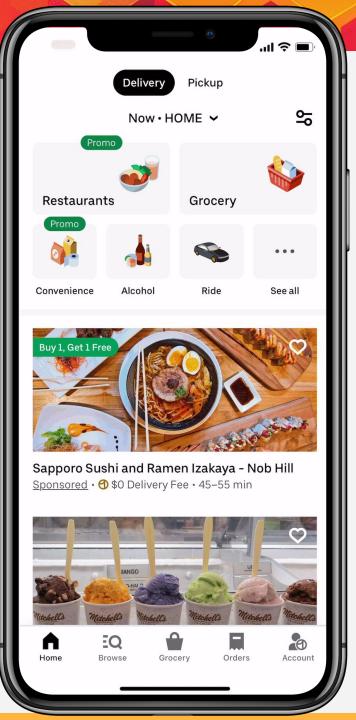
Impact



Eats Homefeed ranking has a direct impact on users:

- → 95% of users start their journey with Home Feed
- → Majority of all orders originated on Home Feed

However, we have minimum real estate & time to convert



Problem

Solution

Embedding

TTE

Architecture

Impact

Existing solution

Lower performance
 High computing
 costs
 Scaling blockers

Problem 1: Lack of efficient retrieval model

We needed to retrieve the best stores out of thousands in just <u>50ms.</u>

Problem 2: Existing technology could not scale (Deep Matrix Factorization (DeepMF)).

- \rightarrow Required <u>1,000+ city models globally</u> (location based)
- \rightarrow Not reusable
- → Very expensive to maintain (200,000 CPU hours per week -> continued to increase with # of cities)

Embedding

TTE

Architectu

Impact

 \bigstar Long term solution = Embeddings \bigstar

Better performance
 Lower computing costs
 Eliminated scaling blockers

Champion use case = Eats Homefeed

- \rightarrow Proves the value and <u>replaced</u> DeepMF.
- → Retrieves personalized stores in 50ms, enabling customers to quickly 8 easily find items by selecting the <u>best</u> store for them.
- → We brought embeddings to Uber by building the platform capability so they can be scaled, reused, and transferred <u>beyond our initial use case.</u>

Prince Street Pizza \$0 Delivery Fee \$ Best Overall - 25 min

Joe's Pizza ()\$0 Delivery Fee 4.7★(6,000+) • 35 min

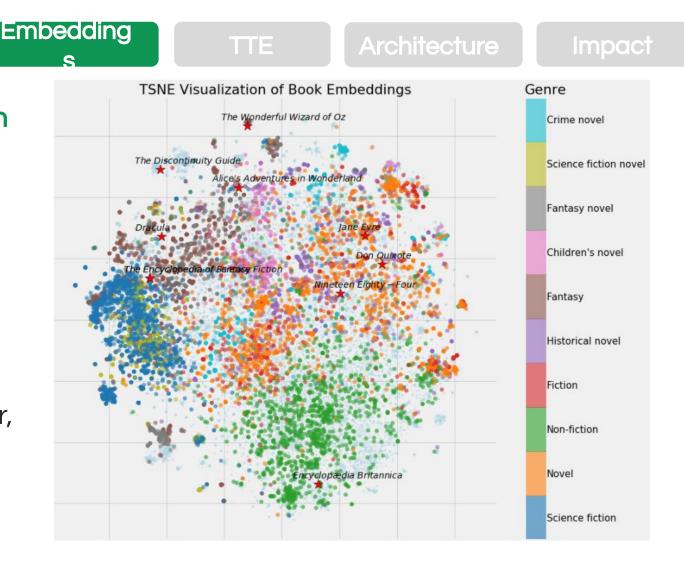
<takeaway Embeddings condense down all features into a single vector>

Solution

Embeddings are a type of feature for modern AI:

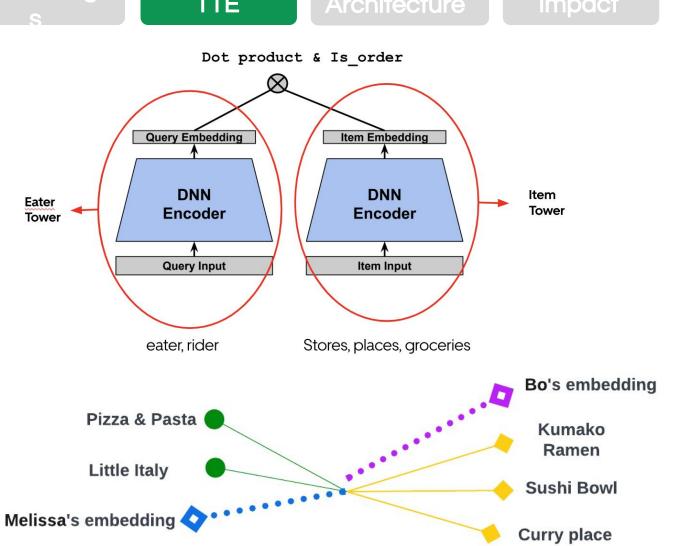
Problem

- Highly condensed vectors (<example>)
- Generally work for any entity such as eater, store, item, rider, location
- More natural for AL/ML tasks such as clustering



We needed a large scale Embedding system to Generate Embeddings for several entities at Uber

- A special way to learn embeddings via user behavior such as click and order
- <u>Eater tower</u>: generates embeddings for eater, rider offline or realtime
- <u>Item tower:</u> generates embeddings for store, grocery and place offline
- Best AI solution for retrieval stage in recommendation system



xt Problem

Solution

Embedding

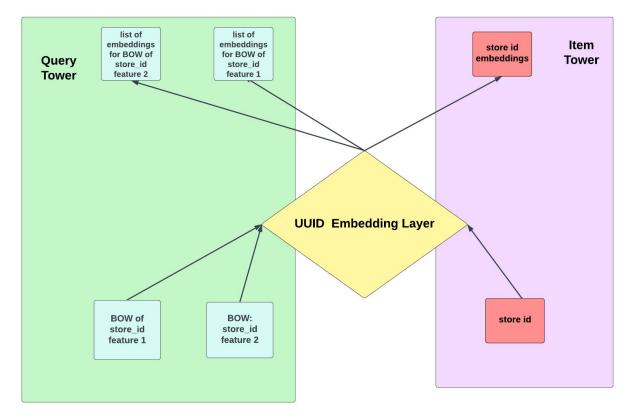
TTE

Architecture

Impact

How to handle large cardinality

- Hundreds of millions eaters
 - Eater_id as a feature = <u>huge model 99% of the</u>
 <u>model size</u>
 - Cold start problem for new users & hash collision
 - Data can be flawed (i.e. incorrect cuisine tags)
- Millions Stores
 - Past engagements with stores as a proxy of the user_id
 - Layer sharing between store and eater tower
 - Transformers learn eater's list of engagement
- Resulting in:
 - <u>100x model size drop!</u>



Problem Solution

Embedding

TTE

Challenges

Impact

How to handle location based model

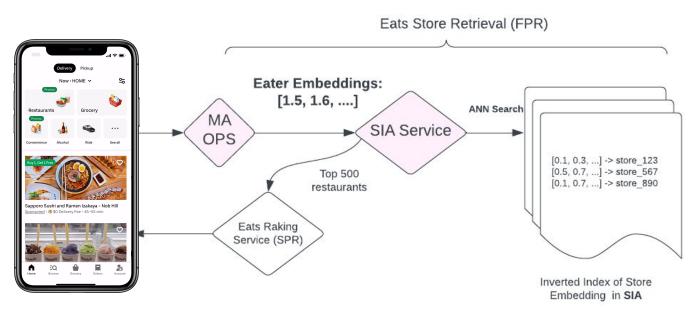
- Uber recommendation system is very location centric
 - Baseline model: city-wise deep-mf for restaurant retrieval
- Spatial indexing: geo base problem
 - find all available restaurants around eater by geolocation distance in real time (boundary control)
 - sort train data by geo-hash so that eaters and close restaurants are in the same batch
- LogQ Correction for In-batch Negatives
 - Create sufficient negatives using in-batch negatives:
 4k to 8K
 - Down-sample restaurants in a batch with LogQ:
 - Q is sampling probability in a batch, w is the item weights in the whole data

*Includes mechanisms to bound time based constraints (5pm can deliver 5miles; 10pm can deliver 10miles), allowing only available items.

Uber

Overall Flow:

- → Generate item/store embeddings and eater model in our online prediction service
- → Index Item/Store embeddings in our retrieval/search engine
- → Eater embedding computed from prediction service at realtime
- → Search engine scores and fetches the most relevant stores/items for eater.



*Includes mechanisms to bound the problem through time based constraints (5pm can deliver 5miles; 10pm can deliver 10miles), allowing only available items.

Embedding Problem Solution Architecture TTE Impact

Embeddings as a Feature

Feature: data with predictive power that is used as input for models to make predictions.

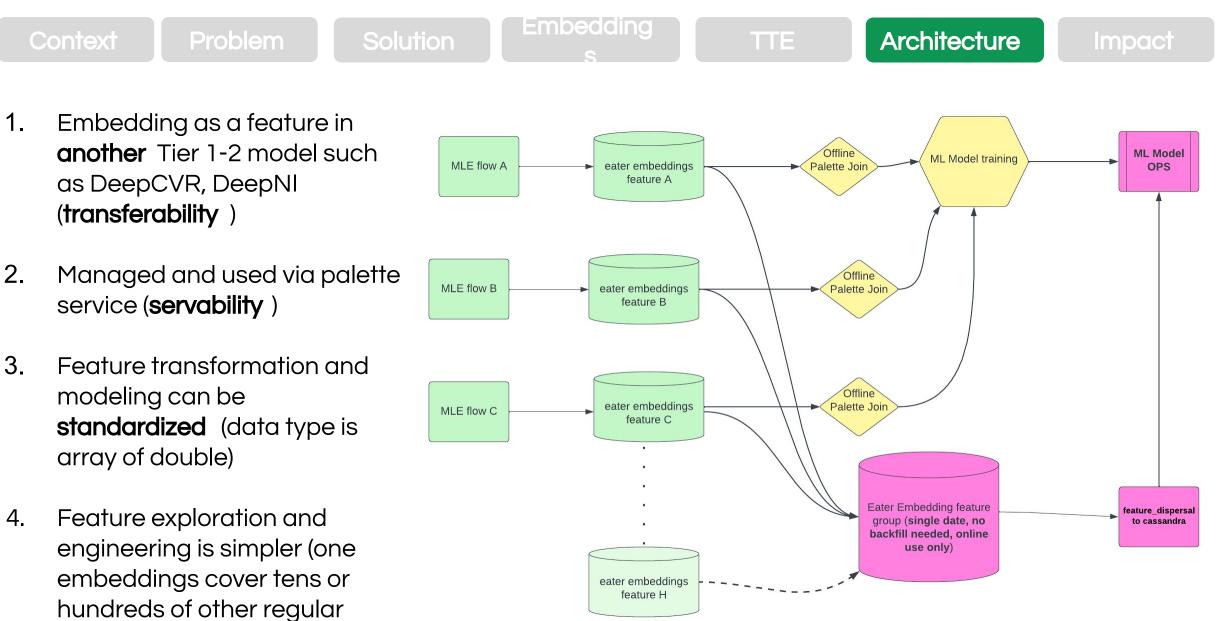
Palette: the industry's first feature store (2017).

One-stop shop for feature engineering needs

- Stores & manages features \rightarrow
- Serves feature data consistently for \rightarrow training & inference

Data Features Model Insight

Our feature Store powers Uber's



Uber features)

Context	Problem	Solution	mbedding s	ding TTE		Arc	Architecture		Impact
	V2.0 Global								
	• •	eliminating thousands els from DeepMF	ds		Recall@100	Recall@200	Recall@300	Recall@400	Recall#500
	of individual mode			Deep MF	0.4858	0.634	0.7198	0.7766	0.8165
¦Res	ults top 20th percentile for improving ma			TTE	0.7856	0.8742	0.9139	0.9364	0.9506
	CVR, and homefeed								
			/						

Infra wins

- → Single global model replaces <u>thousands</u> city DeepMF models
- → Scalable to **millions** of different types of users and multiple trips and sessions
- → Decreased model training from 200,000 to 4800 core hours per week

Uber

Acknowledgements

It took a village to make it a reality, special shout out to:

Bo Ling, **Chun Zh**, **Nicholas Marcott**, **Eric Chen**, **Melissa Barr** and the Michelangelo (ML Platform) team at Uber.

Questions?

