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Operationalizing Machine Learning is Challenging

Siloed Work

Re-implementation and lack of
collaboration due to silos

Lengthy Process

Resource and time-consuming
route from lab to production
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Access to Features

Accessing and preparing real-world
features at scale

Model Accuracy

Tracking, maintaining and
explaining model accuracy



ML/AI Research Projects

Data Lakes / / \ /

Warehouse

Train / AutoML

ML/AI Projects start with focus on building models
With a small data science team




But Productizing ML Is Exponentially Harder
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Productizing AI/ML takes ages and requires an army of engineers
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Accelerate Data Science to Production
By Adopting Automation and a Production-first

Mindset
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Before: Siloed, Complex and Manual Process

Re-code, add scale, Manual Integration Limited Data &
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MLRun’s Key Components For MLOps Acceleration

Automated offline &
online feature
engineering for real-time
and batch data

SO

End to end MLOps
automation. Integrated
with mainstream ML, Git
& CI/CD Frameworks

Ingest Serve Respond

Enrich Monitor

(CECEED

Rapid deployment of
scalable data and ML
pipelines using real-time
serverless technology

Codeless data & model
monitoring, drift
detection & automated
remediation/re-training
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Feature Store - Automated Offline & Online

Feature Engineering at Scale

Data Data MLOps
Engineer Scientist : Engineer
Bl & Data Notebooks / Training
Exploration IDEs & AutoML
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Benefits:

Fast, simple and scalable way to
build features from production data

Implement once, use in training,
real-time serving and monitoring

Share and re-use features across
teams and projects

Glue-less integration with data and
model monitoring

Enable re-training directly from

production data



Implementing A SINGLE Feature Using

recency_feature_group_1

Very Complex

std_interval_between_group_1_in_days std_interval_between_group_1_in_days =

mean_interval_between_group_1_in_days/std_interval_between_group_1_in_days
cv_interval_group_1

user_id

(time_interval)/( *24) mean_interval_between_group_1_in_days SIOW and Resource
stddev_pop(time_interval)/( *24) std_interval_between_group_1_in_days
Intensive

user_id
event_timestamp
(epoch event_timestamp)
- lag( (epoch f event_timestamp))
over (PARTITION user_id event_timestamp)
time_interval

"My_big_transactional_table"

event_timestamp: :t <= \ Won ,t WO rk i n
real-time

event_timestamp::

( (

table_layer_2
user_id

table_layer_3
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MLRun Feature Store - How Does It Work?

Data Scientist Define features and high-level
or Engineers |, transformation + validation logic « Abstract
v/ Developed once
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Key Challenges for Online Feature Engineering

Data scientists are not data engineers

Re-written code is needed to deploy it in production
Working with streaming sources as opposed to parquet files

Performance - Calculate features in real time on live data at scale
Robust transformation — e.g. aggregations on sliding windows
Enrichment — Enrich real time events with historical / operational data
Consistency - between training and serving

Data drift - based on feature drift

Feature reuse — use features for many projects

Feature versioning — aligning feature and model version in production
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Simple SDK for Creating a Real-Time

Transformation

Projects

Projects > fraud-demo-admin > Feature Store (Beta)

Feature Sets Features Feature Vectors Datasets
Name Label:key1,key2=value,
Name . s 7 § 1 i
Overview Features Transformations Preview Statistics Analysis

transaction_set.graph\
.to(DateExtractor(parts = ['hour', 'day_of_week'], timestamp_col = 'timestamp'))\ N
.to(MapValues(mapping={'age': {'U': '@'}}, with_original_features=True))\
.to(OneHotEncoder (mapping=one_hot_encoder_mapping))

# Add multiple aggregations on multiple time windows N
windows = ['2h', '12h', '24h']
transaction_set.add_aggregation(name=f'amount’,
column="amount"', >
operations=['avg','sum', 'count','max'],
windows=windows,
period="1h")




Assemble online & offline features from catalog

Projects > Runway

> Feature store

Datasets Feature sets Features Feature vectors
Q_ Ssearch L v Entity: All v transactions_f_vector m
J
Feature Name Feature set Type Entity Description Labels o Vaision
transactions_f_vector 1.2
iser Int User
Description
this feature vector is used for the scoring
lame Customers String User model. It has the customer transactions data
along with real time aggregations and zscore
calculation.
Float User
a alance Float User (
product_id Product Int Product_name
Customer_tran
ct_name Produ Int Product_name
Vol_last_day Customer_transac
Catalog Product int Product_name
time : Purchases
Pr Int Product_name avg_purchase_1w : Purchases_hist
id omer_transactions Int User rank : Financial_institution
volume Customer_transactions Float User
Float User ( agg
/ol_last_day ansactions Float User ( agg )
Ji Float User \_agg
o 1 letomer trancacting 1ot Lcor Caloulating zecare for the lact da ol

resp = client.get_offline_features(vector)
df = resp.to_dataframe()

service = client.get_online_feature_service(vector)
service.get([{"patient_id": "838-21-8151"}])




Integration with Model Monitoring
Drift Detection & Auto-Retraining

Monitor your models in production,
identify and mitigate drift on the fly

- Collecting

= " Exploratory

Dex::ri]ent Ar?:l;asis

(EDA)
Monitoring

Detect model drift based on ol

feature drift via the integrated N ) N
feature store and start retraining L

Machine Learning Pipeline

15




Live Demo:

ML Production Pipeline - Real-Time Fraud Predictions
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Serverless Stream Processing For Real-Time & Batch
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Thank you!

Do you have any questions?

Yaron Haviv
yaronh@iguazio.com

www.linkedin.com/in/yaronh/
@ @yaronhaviv



