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ATTENTION CUSTOMERS:

Due to high demand these items
will be limited to two per customer:

. Paper towels
. Gase water  allon milk
. D\s\nﬁee\'\\\g Wipes

e

. Bread



https://unsplash.com/@wesleyphotography?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/empty-shelves?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Delivery Trends - Pandemic

30% drop in ordered items being found
Average customer basket size +>35% month over month
500% increase in year over year order volume

More localized events needed to predict which items will sell out
o Increase in the number of items needing to be scored
o Increase in the number of shops needing predictions
o Noise reduction s critical
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ML models can only be as good as
the data we give it
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https://unsplash.com/@jasmin_sessler?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/toilet?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Latency Is an outage
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You need native time travel and a low
latency, high throughput feature store
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Time travel is hard
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The growth in demand for unpredictable event-based
data needs is increasing

Event-based data
needs for ML teams

Ad hoc
event-based
data requests

Data dependency debt

Ability for current
solutions to scale

Time
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Instant Iteration Requires

e Historical feature value generation to try new features
e Expressive time selection to specify your model context iteratively
e Joining values between different entities, at precise times — without

leakage
e Shared feature definitions to power live models

e redis [% IKASKADA

Feature
Stores
for ML




Relative event times are important

ltem found count
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Feature definitions define what to compute
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Time selection defines when to compute
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Discrete + continuous time temporal processing

ltem Entity Features Retailer Entity Features
e Historical purchase count e Historical retailer availability
e Historical replacement rate e Store location
e Historical found rate e Restock times
e Time since last found e Store hours
e Expected time to next not found

Region Features

Shopper Features _
e Found rate of parent product category in

e Time of day shopping begins the region
e Day of week shopping begins
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Getting to production is hard for real-time inferencing

* Over 40% of decision-makers agree their architectures are not good enough
to meet the demands of ML

» The high demand for real-time model inferencing (using ML models in
production) expose major challenges with accuracy, latency, and reliability
in current architectures

* Running ML model inferencing in-database where data is stored solves
some of these critical challenges

Forrester Consulting, 2021

e redis % IKASIKADA 'fé‘i%‘r“éi
or ML




Core ML + Al Computing and Serving for Production Stage

Kaskada as a feature engine

% Connect directly to data: join all your d Ff?a.ttt.lre
event-based data without leakage CHINHONS

% Flexible time selection: instantly compute
at arbitrary, data-dependent points in time

% Offline & Online Feature engine:
compute and maintain features at

relevant points in time
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Event-based data

Redis as primary data store

e Online & Offline feature store: stores
features for low-latency serving

Model store: stores pre-trained
models (binaries)

Evaluation store: stores
response of the models
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High throughput required for scoring
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Low latency required for serving
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Demo
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Summary

Creating models from event based data

Compute features directly from event
based data in order

Enable iteration by exposing time selection
+ feature definitions in the feature
engineering process

Join values between different entities at
precise times historically to prevent
leakage

Instantly compute values at arbitrary data
dependent points in time — discrete and
continuous

e redis % IKASKADA

Operating models from event based data

e Eliminate data discrepancies in production
via shared feature definitions

e Low latency applications need a feature
store to run model inference in database
where the data is stored

e Address real-time throughput needs with a
high-throughput feature store
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ank you!

Do you have any questions?

Davor Bonaci Dr. Charna Parkey Taimur Rashid
CEO @ Kaskada VP, Product @ Kaskada Chief Business Development Officer @ Redis
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