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Prescient is developing next gen ML capabilities 
for clients to answer meaningful questions around 
demand forecasting, spend optimization, and 
customer lifetime value. 
However, to effectively scale rev ops, Prescient needs to streamline 
data engineering across clients to accelerate time to value.

THE SITUATION



Prescient Early Days

Data Model



Customer 1:
20 Data sources
10 columns each

12 hours of maintenance a 
week

 

Ads

Every Customer is Unique

Customer 2:
14 Data sources
12 columns each

50% in spreadsheets 

Customer 3:
8 Data sources
2 columns each

8 hours of maintenance a 
week 

We’re data scientists and also, DBAs, Sys-admins...



Prescient Features 
Hold Predictive Value 
but are not Accessible 
in a Single API

THE CHALLENGES DISCUSSED

Lack of automated management of features 
across Prescient customers

Lack of streamlined feature replication across 
similar data schemas

Lack of scalable centralized repository for 
storing and viewing Prescient features



Focus On Efficiency In Order To Grow

Operationalize 
labor-intensive feature 

engineering work

Speed up onboarding 
new customers

Less time debugging 
different versions of 

one-off scripts

Deliver models faster 
with greater accuracy



A Feature Store 
for Standardization 
& Acceleration

THE SOLUTION

  CENTRALIZE
    Features across multiple customers

  AUTOMATE
   Production data and modeling pipelines for data scientists

  ADOPT
   Visual interface to evaluate, govern, and adopt outcomes



1. Ingest

Raw Data

2. Transform 3. Train/Deploy

ETL/ Feature Eng.

CLV 
Model

Model Training

Multi-Stage ML Pipeline

Logging Data

S3

PyRasgo

Feature Set



Rasgo Feature Engineering Platform

UNDERSTAND
● Feature Metadata

● Source and Feature Lineage

● Feature Profiles

● Feature Importance

●

PREPARE
● User Defined Transforms 

(UDTs) orchestrated by 
Rasgo

● Pre-built functions for 
feature engineering

● Auto-join your features from 
multiple sources

SERVE
● Serve features to models for 

both training and inference 
with PyRasgo

● Track feature drift and 
feature metadata changes 
over time

● Natively integrate with 
production ML ops pipelines



Rasgo Transformers

● User-defined transforms are templated SQL functions for Rasgo Objects

● User-defined transforms are written in SQL but accept python arguments via PyRasgo

● Expanding library of predefined transformations

● Designed to be shared across teams and projects

t1 = li_source.transform(
    transform_name='new_lag',
    Columns = ['COST_IN_USD','CLICKS'],
    Amounts = [1,2,3,7],
    OrderBy = 'DAY',
    Partition = 'CAMPAIGN_ID'
)



A FEATURE STORE 
IS NOT A SEPARATE 
DATA WAREHOUSE
Duplicate infrastructure and data lead to high cost
of ownership and horrendous user experience. The answer 
is ELT.

140X Reduction in 
Cost to Compute

17X+ Faster Feature 
Query Performance

FEATURE METADATA

RAW + FEATURE DATA

30 minutes to deploy on Snowflake
Dev features are immediately prod ready



Thank you!
Do you have any questions?
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