

INTELLIGENT
FORECASTING

Cody Greco
CTO

Patrick Dougherty
Co-Founder and CTO

Prescient is developing next gen ML capabilities
for clients to answer meaningful questions around
demand forecasting, spend optimization, and
customer lifetime value.
However, to effectively scale rev ops, Prescient needs to streamline
data engineering across clients to accelerate time to value.

THE SITUATION

Prescient Early Days

Data Model

Customer 1:
20 Data sources
10 columns each

12 hours of maintenance a
week

Ads

Every Customer is Unique

Customer 2:
14 Data sources
12 columns each

50% in spreadsheets

Customer 3:
8 Data sources
2 columns each

8 hours of maintenance a
week

We’re data scientists and also, DBAs, Sys-admins...

Prescient Features
Hold Predictive Value
but are not Accessible
in a Single API

THE CHALLENGES DISCUSSED

Lack of automated management of features
across Prescient customers

Lack of streamlined feature replication across
similar data schemas

Lack of scalable centralized repository for
storing and viewing Prescient features

Focus On Efficiency In Order To Grow

Operationalize
labor-intensive feature

engineering work

Speed up onboarding
new customers

Less time debugging
different versions of

one-off scripts

Deliver models faster
with greater accuracy

A Feature Store
for Standardization
& Acceleration

THE SOLUTION

 CENTRALIZE
 Features across multiple customers

 AUTOMATE
 Production data and modeling pipelines for data scientists

 ADOPT
 Visual interface to evaluate, govern, and adopt outcomes

1. Ingest

Raw Data

2. Transform 3. Train/Deploy

ETL/ Feature Eng.

CLV
Model

Model Training

Multi-Stage ML Pipeline

Logging Data

S3

PyRasgo

Feature Set

Rasgo Feature Engineering Platform

UNDERSTAND
● Feature Metadata

● Source and Feature Lineage

● Feature Profiles

● Feature Importance

●

PREPARE
● User Defined Transforms

(UDTs) orchestrated by
Rasgo

● Pre-built functions for
feature engineering

● Auto-join your features from
multiple sources

SERVE
● Serve features to models for

both training and inference
with PyRasgo

● Track feature drift and
feature metadata changes
over time

● Natively integrate with
production ML ops pipelines

Rasgo Transformers

● User-defined transforms are templated SQL functions for Rasgo Objects

● User-defined transforms are written in SQL but accept python arguments via PyRasgo

● Expanding library of predefined transformations

● Designed to be shared across teams and projects

t1 = li_source.transform(
 transform_name='new_lag',
 Columns = ['COST_IN_USD','CLICKS'],
 Amounts = [1,2,3,7],
 OrderBy = 'DAY',
 Partition = 'CAMPAIGN_ID'
)

A FEATURE STORE
IS NOT A SEPARATE
DATA WAREHOUSE
Duplicate infrastructure and data lead to high cost
of ownership and horrendous user experience. The answer
is ELT.

140X Reduction in
Cost to Compute

17X+ Faster Feature
Query Performance

FEATURE METADATA

RAW + FEATURE DATA

30 minutes to deploy on Snowflake
Dev features are immediately prod ready

Thank you!
Do you have any questions?

Cody Greco
Chief Technology Officer

Patrick Dougherty
Co-Founder and CTO

patrick@rasgoml.com

