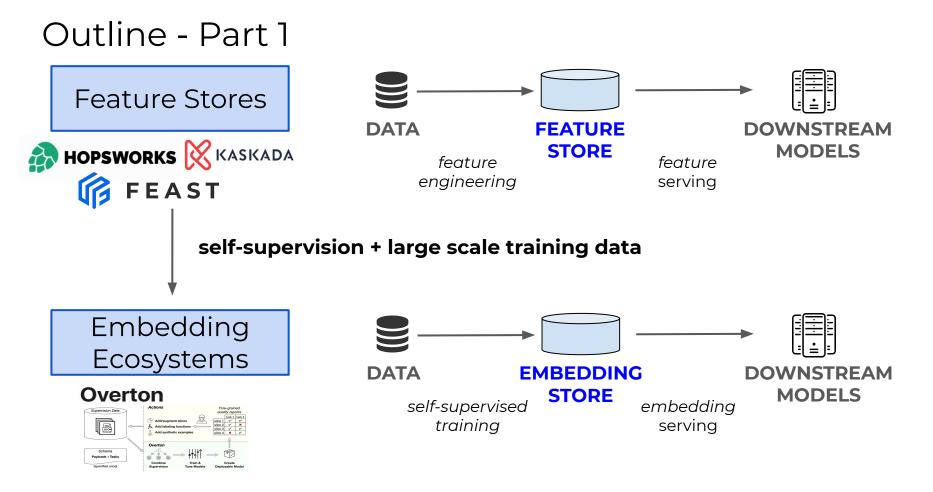
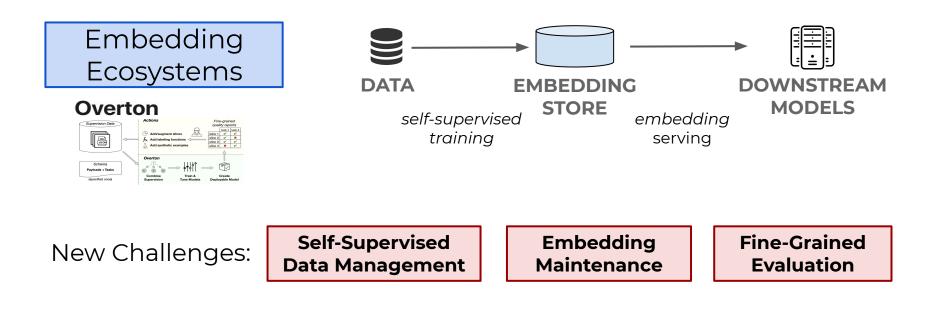
Managing ML Pipelines: Feature Stores and the Coming Wave of Embedding Ecosystems

Feature Store Summit 2021



Both systems speak to the importance of reducing engineer effort

Outline - Part 2



Feature Store to Embedding Ecosystems

Engineer Workflow pre Feature Stores (< 2017-8)

The "Pipeline Jungle" Experience

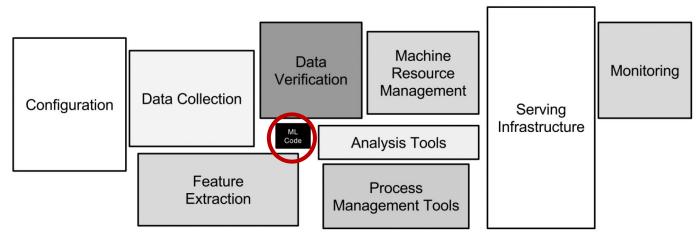


Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

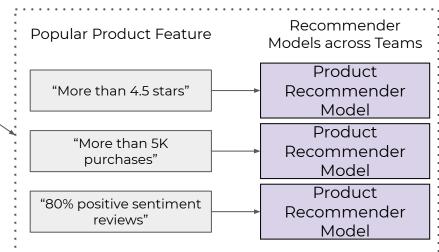
The "Pipeline Jungle" Experience

The challenges to deploying a model:

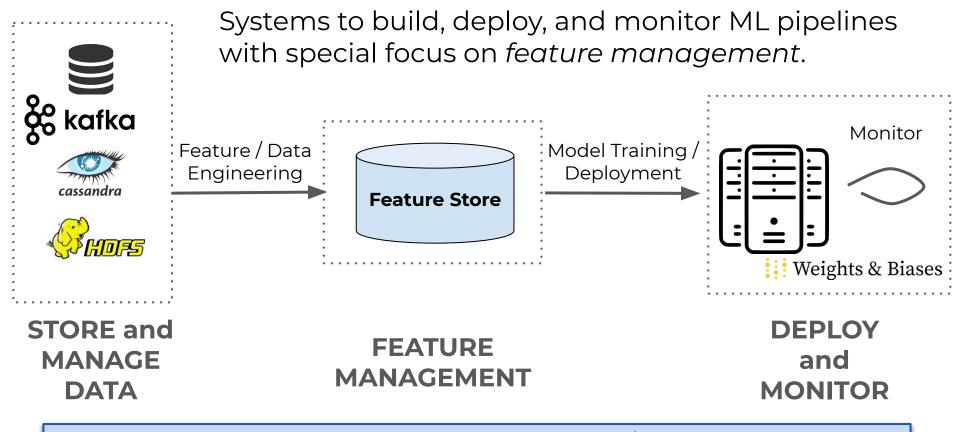
- One-off feature definitions
- Lack of reproducibility
- Inconsistent storage

. . .

- No standard evaluations and testing
- Difficult to detect and recover from errors

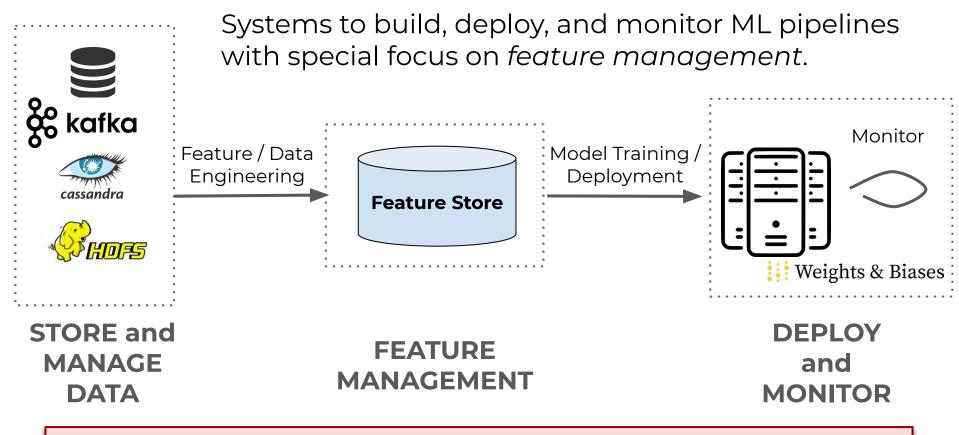


Feature Store Solution



Reduction in engineer effort in managing/sharing features

Feature Store Solution



Still needed hand-craft features and labeled training data - expensive!

9

Enter Self-Supervision

Paradigm where models learn embedding representations of the underlying training data *without* manual labels.

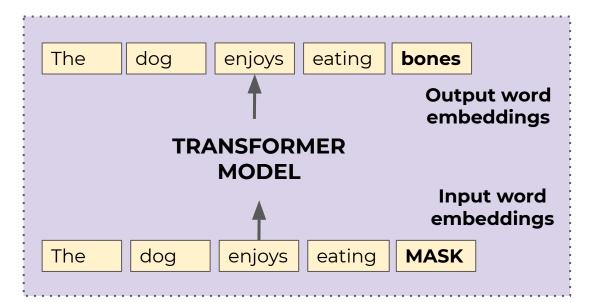
Self-Supervision Example: Transformers and MLM

Learn word embeddings by train a language model to predict a masked word in a given context.

+					
+					
1					
1					
+					
•					
1					
1					
+					
•					
1					
1					
+					
+					
1					
1					
+					
+					
1					
1					
+					
•					
			· . ·		
The	dog	enjoys	eating	bones	
•					

Self-Supervision Example: Transformers and MLM

Learn word embeddings by train a language model to predict a masked word in a given context.

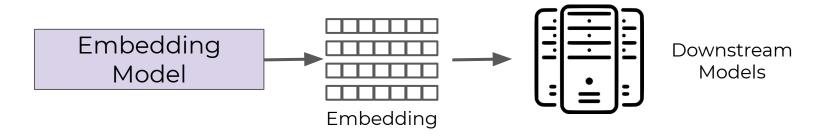


Word embeddings encode contextual information.

Enter Self-Supervision

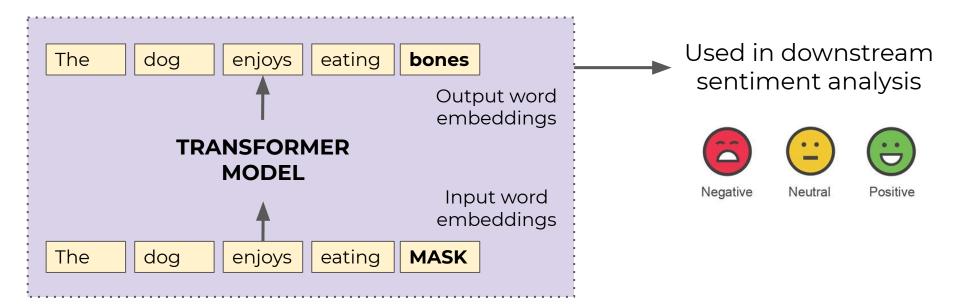
Paradigm where models learn embedding representations of the underlying training data *without* manual labels.

Embeddings are then used in downstream models.



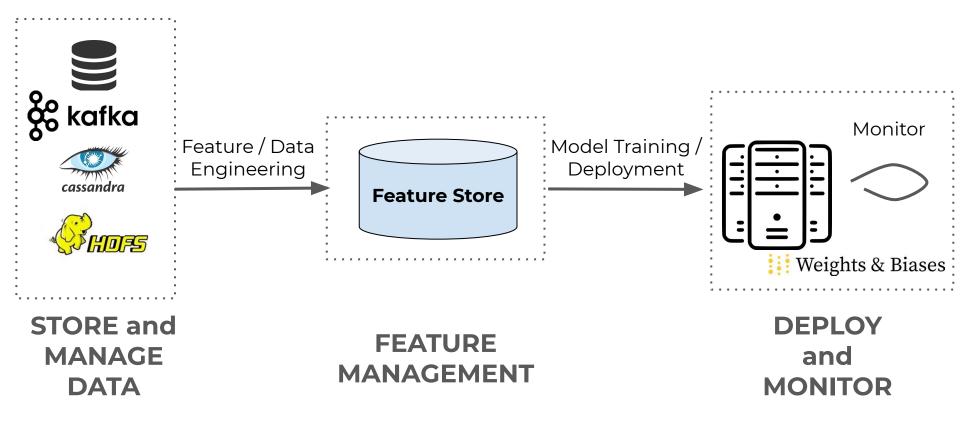
Self-Supervision Example: Transformers and MLM

Learn word embeddings by train a language model to predict a masked word in a given context.



Word embeddings encode contextual information.

Recall Feature Store Solution



Embedding Ecosystems

Self-supervised embeddings, models that train them, and downstream systems that use them. afka Monitor Embedding Model Training / Deployment Training Embedding cassandra Store HOES Weights & Biases STORE and DEPLOY EMBEDDING MANAGE and MANAGEMENT DATA MONITOR

No in engineer effort in creating features; easier to maintain models

Embedding Ecosystems

Self-supervised embeddings, models that train them, and downstream systems that use them. afka Monitor Embedding Model Training / Deployment Training Embedding cassandra Store HOFS Weights & Biases STORE and DEPLOY EMBEDDING MANAGE and MANAGEMENT DATA MONITOR

Open challenges in data, embedding, and model management

Embedding Ecosystems

Self-Supervised Data Management Embedding Maintenance

Fine-Grained Evaluation

Self-Supervised Data Management

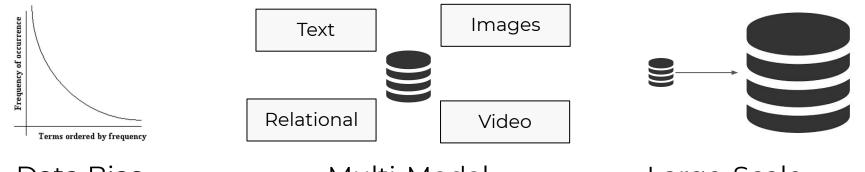
- Rare item biases
- Multi-modal
- Large-scale

Embedding Maintenance

- Embedding updates
- Provenance
- Search

Fine-Grained Evaluation

- User-in-the-loop
- Slice finding
- Model patching



Data Bias

How to overcome systematic biases in unlabeled data?

Multi-Modal

How to support integrating heterogeneous sources?

Large-Scale

How to support data exploration and training over PB?

Self-Supervised Data Management

- Rare item biases
- Multi-modal
- Large-scale

Embedding Maintenance

- Provenance
- Search
- Embedding updates

Fine-Grained Evaluation

- User-in-the-loop
- Slice finding
- Model patching

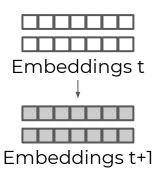


Embedding B

What set of embeddings are best for a specific task? (x_1, y_1) ... (x_n, y_n)

Provenance

What data had the most "impact" on these embeddings?



Updates

How to update embeddings when changes to data?

Self-Supervised Data Management

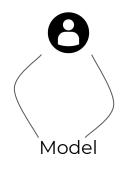
- Rare item biases
- Multi-modal
- Large-scale

Embedding Maintenance

- Provenance
- Search
- Embedding updates

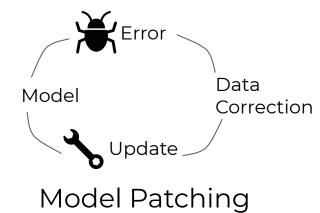
Fine-Grained Evaluation

- User-in-the-loop
- Slice finding
- Model patching

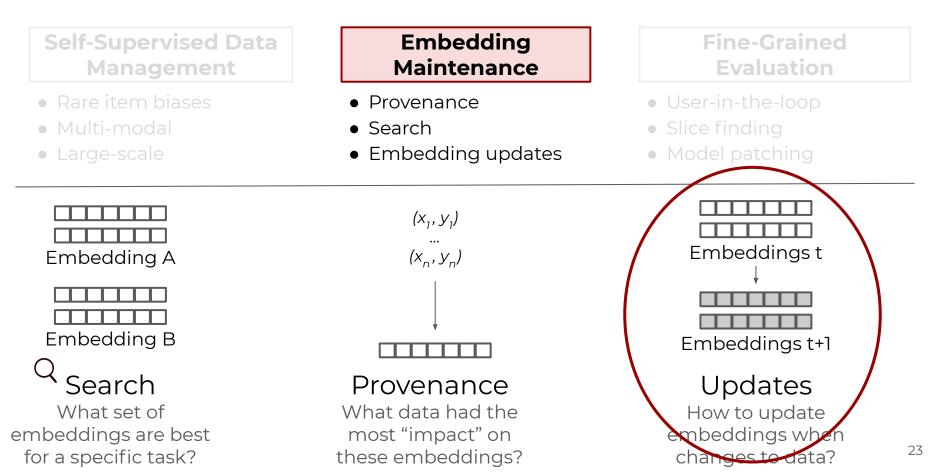


User-in-the-Loop

What are the right data structures to support interactive analysis?



How to correct for errors in models?



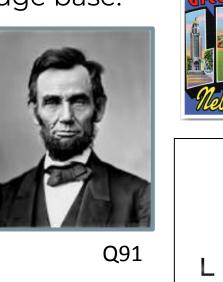
Deep Dive: Embedding Updates

Grounding Use Case: Named Entity Disambiguation

Map "strings to things" in a knowledge base.

How tall is *Lincoln*?

Embeddings key part of assistant, search, and information extraction



Entities Are Continuously Changing

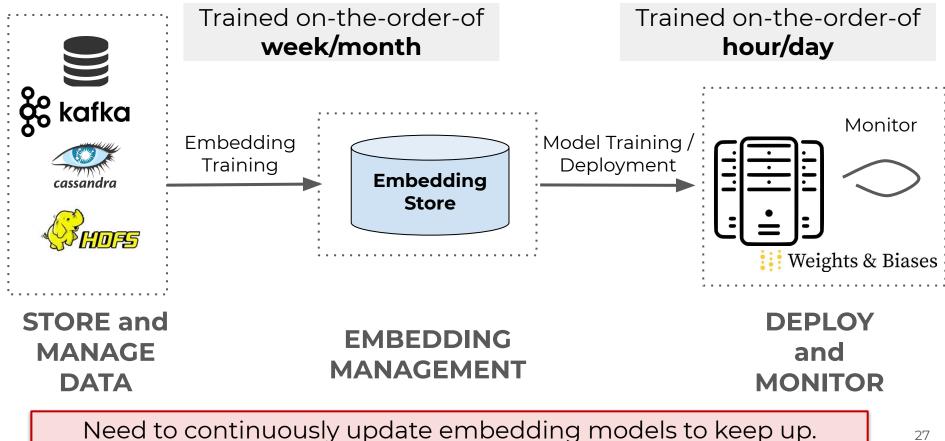
Annual English Wikipedia Growth Rate

Date	Article count	Increase during preceding year	% Increase during preceding year	Doubling time (in years and days rounded up)	Average increase per day during preceding year
2002-01-01	19,700	19,700	-	-	54
2003-01-01	96,500	76,800	390%	160 days	210
2004-01-01	188,800	92,300	96%	377 days	253
2005-01-01	438,500	249,700	132%	301 days	682
2006-01-01	895,000	456,500	104%	355 days	1251
2007-01-01	1,560,000	665,000	74%	342 days	1822
2008-01-01	2,153,000	593,000	38%	1 year, 302 days	1625
2009-01-01	2,679,000	526,000	24%	2 years, 326 days	1437
2010-01-01	3,144,000	465,000	17%	4 years, 29 days	1274
2011-01-01	3,518,000	374,000	12%	5 years, 284 days	1025
2012-01-01	3,835,000	317,000	9%	7 years, 257 days	868
2013-01-01	4,133,000	298,000	8%	8 years, 243 days	814
2014-01-01	4,413,000	280,000	7%	9 years, 330 days	767
2015-01-01	4,682,000	269,000	6%	11 years, 202 days	736
2016-01-01	5,045,000	363,000	8%	8 years, 243 days	995
2017-01-01	5,321,200	276,200	7%	9 years, 330 days	755
2018-01-01	5,541,900	220,700	4.5%	15 years, 148 days	605
2019-01-01	5,773,600	231,700	4.2%	16 years, 310 days	635
2020-01-01	5,989,400	215,800	3.75%	20 years, 11 days	591
2021-01-01	6,219,700	230,300	3.8%	20 years	629
2021-10-01	6,386,116	166,388 ^[a]	-	-	608 ^[a]

~73 new sellers every hour

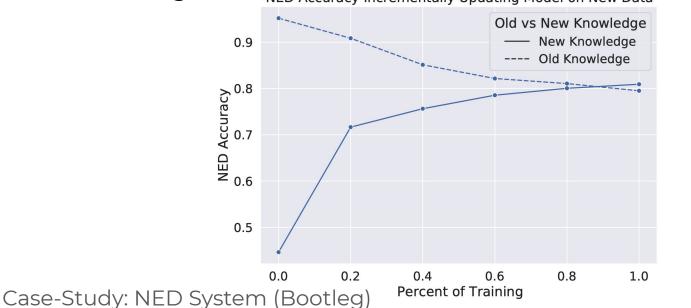
~630 new pages every day

Update Frequency



Forgetting Old Knowledge

What happens when we continuously train a model on stream of new knowledge?



Streaming update methods forget old information, especially popular entities.

Tail Insight

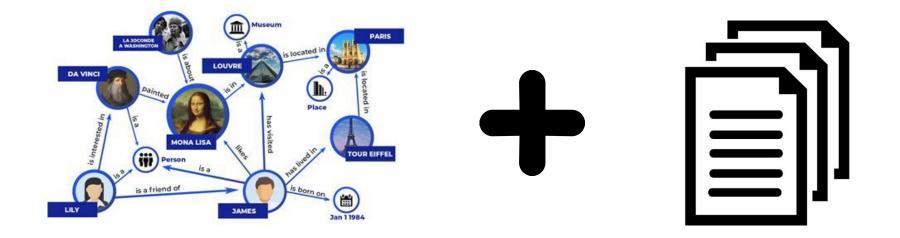
Tail entities leverage structured knowledge

-> Update all popular entities and structured metadata

Sample balances new and old knowledge.

Updating Entity Knowledge Take Away

Entities are continuously changed and embedding models need to be quickly updated to maintain quality

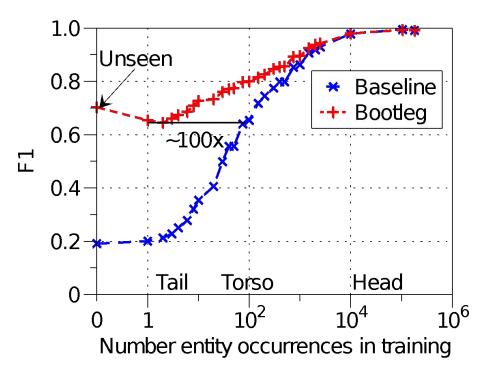


Take advantage of the integrated structured and unstructured data when selecting update data.

Challenge 1: Tail Bias

Tail Challenge

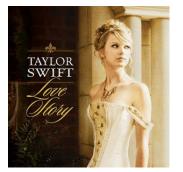
Impossible to scale the data to memorize all patterns needed for rare entities.



Subtle reasoning clues are needed for the tail! (+40 F1 points by encoding these reasoning patterns)

Reasoning over Relationships

Victoria Mitchell (poker player, writer)



Love Story by Taylor Swift * Images from Wikipedia

David Mitchell

Victoria Mitchell (runner) David and Victoria Mitchell added spice to their marriage

Love Story by Andy Williams

Play Love Story by Williams

33

Reasoning over Types

How tall is Lincoln?

What is the cheapest Lincoln?

How many people are in Lincoln?

LINCOLN

People have heights, not places or brands

Brands have prices, not places or people

Places have populations, not people or brands

Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over *type* and *relationship* signals can resolve unseen entities.

Implementation: use *embeddings* to teach a model to reason over types and relationships.

Orr, Laurel, et al. "Bootleg: Chasing the tail with self-supervised named entity disambiguation." *arXiv preprint arXiv:2010.10363* (2020).

Bootleg: Tail Performance

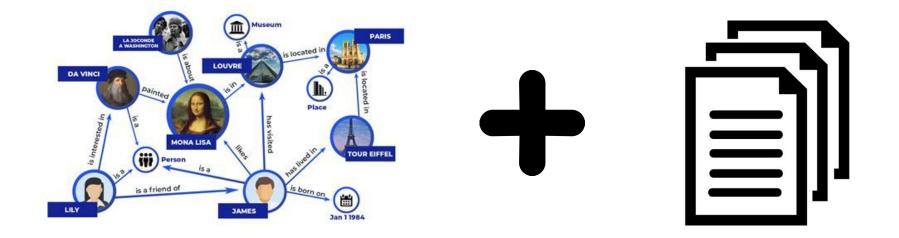
On the head, BERT-based baseline performs ~ 5 F1 points of Bootleg. On the tail, Bootleg outperforms baseline by > 40 F1 points!

Evaluation Set	BERT NED Baseline	Bootleg	# Examples
All	85.9	91.3	4,066K
Torso Entities	79.3	87.3	1,912K
Tail Entities	27.8	69.0	163K
Unseen Entities	18.5	68.5	10K

Performance results on Wikipedia dataset.

Self-Supervised Data Take Away

Self-supervised data does not well represent tail distributions -> embeddings may not be high quality for rare entities



Integrating structured knowledge with unstructured data allows for better generalization to the tail.