

Twitter's Management of ML
Features in Dynamic
Environments

David Liu
Machine Learning Engineer
Twitter

https://www.linkedin.com/in
/mavysavydav/

@mavysavydav on Twitter

https://www.linkedin.com/in/mavysavydav/
https://www.linkedin.com/in/mavysavydav/
https://twitter.com/mavysavydav

What is a Feature Store?

● Set of standards?
● A framework?
● Metadata management?
● Databases?

Is a feature store just a rebranding of existing
tools/systems?

● Datastores / databases / data warehouses
● High load data fetching in online contexts
● SQL Joins
● Map-reduce based joins
● Data processing jobs management
● Workflow management
● Config management

Core Tenets of a Feature Store

In order of priority:

1. Ensure consistency
2. Increase experimental/productionization velocity
3. Shareability of features

What should a feature store be in the user’s perspective?
(Consuming features)

Feature Store Abstraction

Experimentation (Offline)
API that takes in references to features
and data, and returns the data with the

features joined in.

Online serving
API that takes in references to features
and ids, and returns the feature data for

those ids.

What should a feature store be in the user’s perspective?
(Producing/Registering features)

Feature Store Abstraction

Register Features
-Provide address of where the features are

stored
-Specify the features to include in the
feature store and which entity they’re

associated with
- Specify any metadata

Fill out / implement the provided config template for
the recurring data job
-Specify data source

-Specify any transform logic
-Specify any needed metadata

-Set schedule

Auto-staging +
validation that it
conforms with
standards

Auto-validation of
source to ensure
address exists and
features exist

Is a feature store just a rebranding of existing
tools/systems?

● Datastores / databases / data warehouses
● High load data fetching in online contexts
● SQL Joins
● Map-reduce based joins
● Data processing jobs management
● Workflow management
● Config management

Don’t need to worry about these d
etails!!

Core Tenets of a Feature Store

In order of priority:

1. Ensure consistency
2. Increase experimental/productionization velocity
3. Shareability of features

Consistency Pyramid

Consistency in feature group tied to the model

Consistency in use of correct version of sources and
features

Consistency in feature definitions in a mutable
shared registry

Consistency in data between offline / online
stores

Consistency in data between offline / online stores

Standardized schemas
and structure in offline

store

Standardized schemas
and structure in online

store

Reliable transfer of feature data

Consistency in feature definitions in a mutable shared
registry

Using the same model as git:

origin/master + branches

Origin Registry

Branch Registry

Branch Registry

Push changes

Consistency in use of correct version of sources and
features

- First class support or can it just be
incorporated as part of the naming
scheme or extra metadata fields?

- Which versioning scheme would
most reduce the chance of human
error?

- Intuitive grouping of feature versions
vs optimizing for datastore / data
warehouse / database performance?

Consistency in feature group tied to the model

Time elapsing as the model is developed / retrained / reworked in a highly collaborative context

How Twitter solves some of these issues:

 Feast Core

BigQuery CockroachDB

Manhattan
In-house database

Feast
Serving

Loris
In-house ingestion

management system

The Flexibility of the Feast Provider Abstraction

Provider

Reference to Online Store Connector

Reference to Offline Store Connector

Logic to transfer data from offline store
to online store

Custom CRDB
online store
interface
implementation that
we’ll probably open
source Existing open

source BigQuery
offline store
implementation

Invokes methods of
the online store /
offline store
interfaces and
triggers entirely
custom dataflow job

Core Tenets of a Feature Store

In order of priority:

1. Ensure consistency
2. Increase experimental/productionization velocity
3. Shareability of features

Increase experimental/productionization velocity

Integrate well with other ML components
- TFX Example Gens
- Data types consistency throughout the ML pipeline
- Kubeflow

Increase experimental/productionization velocity

Hot / live updates of feature sets that services use + on/off toggles

Increase experimental/productionization velocity

Automatically aggregation of experiment details that can be viewed via UI
- Model used
- Feature set used
- Which toggles were on/off

Increase experimental/productionization velocity

Ease of discovering which permissions are needed for certain feature data, ease of requesting it,
and turnaround time for approval.

Increase experimental/productionization velocity

Ease of capacity planning / requesting capacity

Core Tenets of a Feature Store

In order of priority:

1. Ensure consistency
2. Increase experimental/productionization velocity
3. Shareability of features

Shareability of Features

- Centralized Catalog
- Discovery

- Usage tracking
- Feature importance

- Reliability of using other teams’ features. Can the data be trusted?
- Deprecation process
- Get a data sample

The challenges we haven’t figured out yet

- How to minimize the amount of support in this two-sided marketplace of producers and
consumers? How do we maximize self-serve?

- Access control that does its job but doesn’t introduce much friction
- What incentivizes sharing? Why would they want to share if they may have to provide

maintenance / support for those pipelines?
- Massive datasets: 5000+ features, billions of rows
- How can a scribing system hook onto our new platform?

Thank you!

https://www.linkedin.com/in/mavysavydav/

@mavysavydav

https://www.linkedin.com/in/mavysavydav/
https://twitter.com/mavysavydav

