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Michelangelo Palette
Feature Discovery
Sharing across Models
Automatic feature selection

Monitoring
Pipeline & Data Quality

Palette Feature Store
Online serving + Joins
Offline serving + Joins

Feature Preparation
Batch + Streaming ETLs

Michelangelo Transformer
Model specific feature xforms
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History

2016 2017 2018 2019 2020 2021

World’s first 
Feature 
Store 
announced!

Scalability
Dispersals
Optimized Serving

Automatic
Feature
Selection

Data Quality

Self-Service 
ETL and 
automation

Online 
Serving

Offline 
Serving

Early Adoption Near real-time features

Uber-wide  adoption
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Problems at Scale
Online Serving
10s of Millions of QPS

Offline Serving
100s of TBs per training run

Pipeline Scale
1000s of Feature Pipelines

Discovery at Scale
Select from 100K features 
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Online Serving

x 10s

Restaurants

x 1000s

Features

Models Final ranking
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Online Serving
Serving Infra

Table Consolidation

Custom Partitioning

Efficient Dispersals
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Serving Infra

Local cache

JVM-local, in-memory

Thousands of cities
(100s of MBs)

Hottest partitions

Distributed, in-memory 
(eg. Redis)

Millions of restaurants
(100s of GBs)

Hot partitions

Distributed, KV-Store 
(eg. Cassandra)

100 Millions of Users
(10s of TBs)

Remote cache NoSQL

QPS/Latency 
per $

Storage Capacity
Advanced uses
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Table Consolidation

Restaurant 
(Key)

Ratings

Starbux 4.7

Fills 4.8

Black Bottle 4.9

Feature Group Table Design
- Ownership
- Feature Gen Job
- Semantic Grouping

Restaurant 
(Key)

Wait Times

Starbux 5min

Fills 10min

Black Bottle 20min

Restaurant 
(Key)

Embeddings

Starbux [0.4, 0.1, …]

Fills [0.9, 0.2, …]

Black Bottle [0.5, 0.4, …]
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Table Consolidation
Restaurant Ratings

Black Bottle 4.9

Query Fanout Per Table

High QPS

High Tail Latency
Restaurant Wait Times

Black Bottle 20min

Restaurant Embeddings

Black Bottle [0.5, 0.4, …]

Feature 
Store

Black Bottle 
features 
request
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Table Consolidation
Consolidated Tables

Eliminate fanout

Low Latency

Restaurant Ratings Wait Times Embeddings

Black Bottle 4.9 20min [0.5, 0.4, …]

Feature 
Store

Black Bottle 
features 
request
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Custom Partitioning
Features based on 2 or more keys
Partition key = Primary Key = User + Restaurant

User (Key 1) Restaurant (Key 2) Avg Rating 
(Value)

Nicholas Starbux 4.5

Nicholas Fills 4.6

Nicholas Black Bottle 4.0
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Custom Partitioning
Nicholas Starbux 4.5

Nicholas Fills 4.6

Nicholas Black Bottle 4.0

Query Fanout Per Restaurant

High QPS

High Tail Latency

Feature 
Store

Nicholas’s 
ratings request
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Custom Partitioning
Customized partitioning

Partition Key = User
         Shard Local Key = Restaurant

Eliminate fanout

Low Latency Nicholas Starbux 4.5

Nicholas Fills 4.6

Nicholas Black Bottle 4.0

Feature 
Store

Nicholas’s 
ratings request
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Efficient Dispersals
Spark

Cassandra 
SSTables

Too many SSTable 
files created

Compaction falls 
behind

High Read Latency
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Efficient Dispersals
Spark

Cassandra 
SSTables

Cassandra and Spark 
partition functions 
aligned

Tuning Compaction 
algorithms

Consistency, Read repair, 
GC, SSD config, etc. 
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Offline Serving
How to tune Spark for huge joins?

How to avoid skewed joins and OOMs?

How to speed up joins?
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Batching
Break join into manageable batches

Fixed tuning per batch

1 month * 33 months of Data
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Delta
Process updates instead of entire snapshots

Full Snapshot 

Num orders (Feature Values)

User 
(Key)

Day 1 Day 2 Day 3

Nicholas 10 10 10

Amit 21 21 22

Delta Snapshot 

Num orders (Feature Values)

User 
(Key)

Day 1 Day 2 Day 3

Nicholas 10 - -

Amit 21 - 22
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Delta
10X or more reduction in Spark shuffle cost

Day1 Day2 Day3 Day1

Day2 Day3
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Other Join Optimizations
Spark optimizations
Job Scheduling, Map-side joins, Filtering, Large Containers

Join reuse framework
Reuse joins across multiple training iterations (eg. 
hyperparameter tuning)
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Pipelines at scale
Are 1000s of Pipelines are producing reliable 
features ?

How can we avoid debugging of issues at 
Training time ?

How can we enforce accountability ?
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Uber Data Quality
Metadata

Lineage

Tiering

Test Registration

Ownership
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Tying to ML Quality 

Feature Store
Auto-onboard for 
Data Quality

Michelangelo
Model
Score
Data Quality as 
score component

Leadership 
Visibility
Poor scoring 
models flagged
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Discovery at Scale
How to choose relevant features from 
repository of 100K+ ?

How do we avoid redundant building of 
features ?
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Feature Store Search
Search by entity, key, name, etc.
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Data Browser
Stats, Data quality Lineage
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Automatic Feature Search

Mutual Information: 
Feature and Label

Entropy of a feature
Search Feature Store by 
Join Key, rank by MI

Michelangelo 
Training 
workflow
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Where we’re headed
Recommendation Systems 
Uber Search Engine
Inline execution of Models

Feature Intelligence
Lineage across Data and ML
Data Mining tools

Embeddings
Vector types, Versioning, 
Discovery

Near real-time features
Aggregation infra
Seamless backfills
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Thank you!
Do you have any questions?

https://www.linkedin.com/in/amitabh-nene/

https://www.linkedin.com/in/bmarcott/


