FEATURE STORE SUMMIT

12-13 OCTOBER | 08:30 AM - 4:00 PM PT

ORGANIZED BY HOPSWORKS

Michelangelo Palette at Scale

Amit Nene Architect, Manager Uber

Nicholas Marcott Lead Engineer Uber

Michelangelo Palette

Feature Preparation

Batch + Streaming ETLs

Palette Feature Store

Online serving + Joins Offline serving + Joins

Monitoring Pipeline & Data Quality

Engineering

Feature Discovery

Sharing across Models Automatic feature selection

Michelangelo Transformer

Model specific feature xforms

History

Self-Service ETL and automation	World's first Feature Store announced!	Sca Disp Opti	lability persals mized Serving		Automatic Feature Selection	
Online Serving	Early Adoption	Nea	r real-time feature	S	Data Quality	
Offline Serving		Ube	r-wide adoption			
2016	2017	2018	2019	2020	2021	Feature

for ML

Problems at Scale

Online Serving 10s of Millions of QPS

Offline Serving 100s of TBs per training run

Pipeline Scale 1000s of Feature Pipelines

Discovery at Scale Select from 100K features

Engineering

Uber Engineering

Online Serving

Serving Infra

Table Consolidation

Custom Partitioning

Efficient Dispersals

Serving Infra

QPS/Latency per \$ Storage Capacity Advanced uses

Local cache

JVM-local, in-memory

Thousands of cities (100s of MBs)

Hottest partitions

Engineerina

Remote cache

Distributed, in-memory (eg. Redis)

Millions of restaurants (100s of GBs)

Hot partitions

NoSQL

Distributed, KV-Store (eg. Cassandra)

100 Millions of Users (10s of TBs)

Table Consolidation

Feature Group Table Design

- Ownership
- Feature Gen Job
- Semantic Grouping

Restaurant (Key)	Ratings		
Starbux	4.7		
Fills	4.8		
Black Bottle	4.9		

Restaurant (Key)	Wait Times		
Starbux	5min		
Fills	10min		
Black Bottle	20min		

Restaurant (Key)	Embeddings				
Starbux	[0.4, 0.1,]				
Fills	[0.9, 0.2,]				
Black Bottle	[0.5, 0.4,]				

Feature Stores for ML

Table Consolidation

Feature Stores for ML

Table Consolidation

Consolidated Tables

Engineering

Eliminate fanoutRestaurantRatingsWait TimesEmbeddingsLow LatencyBlack Bottle4.920min[0.5, 0.4, ...]

Black Bottle features request

Custom Partitioning

Features based on 2 or more keys Partition key = Primary Key = User + Restaurant

User (Key 1)	Restaurant (Key 2)	Avg Rating (Value)	
Nicholas	Starbux	4.5	
Nicholas	Fills	4.6	
Nicholas	Black Bottle	4.0	

Custom Partitioning

Custom Partitioning

Customized partitioning Partition Key = User Shard Local Key = Restaurant

Eliminate fanout

Nicholas	Starbux	4.5
Nicholas	Fills	4.6
Nicholas	Black Bottle	4.0

Efficient Dispersals

Too many SSTable files created

Compaction falls behind

High Read Latency

Engineerina

llher

Efficient Dispersals

Cassandra and Spark partition functions aligned

Tuning Compaction algorithms

Engineerina

Consistency, Read repair, GC, SSD config, etc.

Offline Serving

How to tune Spark for huge joins?

How to avoid skewed joins and OOMs?

How to speed up joins?

Batching

Break join into manageable batches

Fixed tuning per batch

Delta

Process updates instead of entire snapshots

	F	-ull Snapsho	t			D	ot	
	Num orders (Feature Values)				Num orders (Featu			
User (Key)	Day 1	Day 2	Day 3	•	User (Key)	Day 1	Day 2	Day 3
Nicholas	10	10	10		Nicholas	10	-	-
Amit	21	21	22		Amit	21	-	22

Delta

10X or more reduction in Spark shuffle cost

Other Join Optimizations

Spark optimizations

Job Scheduling, Map-side joins, Filtering, Large Containers

Join reuse framework

Reuse joins across multiple training iterations (eg. hyperparameter tuning)

Pipelines at scale

Are 1000s of Pipelines are producing reliable features ?

How can we avoid debugging of issues at Training time ?

How can we enforce accountability?

Engineerina

Uber Data Quality

ML Features store. Metadata Tier
Team Tier1 Eats Definition
 Quality Lineage Standard tests User defined tests Incidents Overall quality (Get help) Eailed Tiering Freshness (Show Grafana) Sep 27 Sep 28 Recommended SLA 127hr 36min Osec SLA 128hr Osec PHX and an end of a set of a s uber_eats.store **Test Registration** Completeness SLA 0.00% 0 No tests available **Ownership** Duplicates SLA 0.00%

uber eats.store

Engineering

DCA

Feature Stores for ML

Switch to old view

Sep 30

Snooze alerts

2021/09/27 - 2021/09/20

Sep 29

Tying to ML Quality

Feature Store Auto-onboard for Data Quality

Michelangelo Model Score Data Quality as score component

Leadership Visibility Poor scoring models flagged

Discovery at Scale

How to choose relevant features from repository of 100K+?

How do we avoid redundant building of features ?

Feature Store Search

Search by entity, key, name, etc.

Q	Databook	Explore	Ownership	Create	P 0	Q	Search for
۲	ML Features store. Tier Team Team Team Teats	v					
	Description HQL Source Join Key O	,					Source Datasets Offline: <u>uber_eats.</u> Online: <u>store.</u>
	Features 0				Feature Type		Compute Type BATCH

Data Browser

Stats, Data quality

Lineage

Automatic Feature Search

Entropy of a feature

 $H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$

Mutual Information: Feature and Label

I(X;Y) = H(X) - H(X|Y)

Search Feature Store by Join Key, rank by MI Michelangelo Training workflow

Engineering

High level workflow of optimal feature discovery

Where we're headed

Recommendation Systems

Uber Search Engine Inline execution of Models

Feature Intelligence

Lineage across Data and ML Data Mining tools

Embeddings Vector types, Versioning, Discovery

Near real-time features Aggregation infra Seamless backfills

Thank you!

Do you have any questions?

https://www.linkedin.com/in/amitabh-nene/

https://www.linkedin.com/in/bmarcott/

