
Engineering

Engineering

Michelangelo Palette
at Scale

Amit Nene
Architect, Manager
Uber

Nicholas Marcott
Lead Engineer
Uber

Presenter 1
Photo

Presenter 2
Photo

Engineering

Michelangelo Palette
Feature Discovery
Sharing across Models
Automatic feature selection

Monitoring
Pipeline & Data Quality

Palette Feature Store
Online serving + Joins
Offline serving + Joins

Feature Preparation
Batch + Streaming ETLs

Michelangelo Transformer
Model specific feature xforms

Engineering

History

2016 2017 2018 2019 2020 2021

World’s first
Feature
Store
announced!

Scalability
Dispersals
Optimized Serving

Automatic
Feature
Selection

Data Quality

Self-Service
ETL and
automation

Online
Serving

Offline
Serving

Early Adoption Near real-time features

Uber-wide adoption

Engineering

Problems at Scale
Online Serving
10s of Millions of QPS

Offline Serving
100s of TBs per training run

Pipeline Scale
1000s of Feature Pipelines

Discovery at Scale
Select from 100K features

Engineering

Online Serving

x 10s

Restaurants

x 1000s

Features

Models Final ranking

Engineering

Online Serving
Serving Infra

Table Consolidation

Custom Partitioning

Efficient Dispersals

Engineering

Serving Infra

Local cache

JVM-local, in-memory

Thousands of cities
(100s of MBs)

Hottest partitions

Distributed, in-memory
(eg. Redis)

Millions of restaurants
(100s of GBs)

Hot partitions

Distributed, KV-Store
(eg. Cassandra)

100 Millions of Users
(10s of TBs)

Remote cache NoSQL

QPS/Latency
per $

Storage Capacity
Advanced uses

Engineering

Table Consolidation

Restaurant
(Key)

Ratings

Starbux 4.7

Fills 4.8

Black Bottle 4.9

Feature Group Table Design
- Ownership
- Feature Gen Job
- Semantic Grouping

Restaurant
(Key)

Wait Times

Starbux 5min

Fills 10min

Black Bottle 20min

Restaurant
(Key)

Embeddings

Starbux [0.4, 0.1, …]

Fills [0.9, 0.2, …]

Black Bottle [0.5, 0.4, …]

Engineering

Table Consolidation
Restaurant Ratings

Black Bottle 4.9

Query Fanout Per Table

High QPS

High Tail Latency
Restaurant Wait Times

Black Bottle 20min

Restaurant Embeddings

Black Bottle [0.5, 0.4, …]

Feature
Store

Black Bottle
features
request

Engineering

Table Consolidation
Consolidated Tables

Eliminate fanout

Low Latency

Restaurant Ratings Wait Times Embeddings

Black Bottle 4.9 20min [0.5, 0.4, …]

Feature
Store

Black Bottle
features
request

Engineering

Custom Partitioning
Features based on 2 or more keys
Partition key = Primary Key = User + Restaurant

User (Key 1) Restaurant (Key 2) Avg Rating
(Value)

Nicholas Starbux 4.5

Nicholas Fills 4.6

Nicholas Black Bottle 4.0

Engineering

Custom Partitioning
Nicholas Starbux 4.5

Nicholas Fills 4.6

Nicholas Black Bottle 4.0

Query Fanout Per Restaurant

High QPS

High Tail Latency

Feature
Store

Nicholas’s
ratings request

Engineering

Custom Partitioning
Customized partitioning

Partition Key = User
 Shard Local Key = Restaurant

Eliminate fanout

Low Latency Nicholas Starbux 4.5

Nicholas Fills 4.6

Nicholas Black Bottle 4.0

Feature
Store

Nicholas’s
ratings request

Engineering

Efficient Dispersals
Spark

Cassandra
SSTables

Too many SSTable
files created

Compaction falls
behind

High Read Latency

Engineering

Efficient Dispersals
Spark

Cassandra
SSTables

Cassandra and Spark
partition functions
aligned

Tuning Compaction
algorithms

Consistency, Read repair,
GC, SSD config, etc.

Engineering

Offline Serving
How to tune Spark for huge joins?

How to avoid skewed joins and OOMs?

How to speed up joins?

Engineering

Batching
Break join into manageable batches

Fixed tuning per batch

1 month * 33 months of Data

Engineering

Delta
Process updates instead of entire snapshots

Full Snapshot

Num orders (Feature Values)

User
(Key)

Day 1 Day 2 Day 3

Nicholas 10 10 10

Amit 21 21 22

Delta Snapshot

Num orders (Feature Values)

User
(Key)

Day 1 Day 2 Day 3

Nicholas 10 - -

Amit 21 - 22

Engineering

Delta
10X or more reduction in Spark shuffle cost

Day1 Day2 Day3 Day1

Day2 Day3

Engineering

Other Join Optimizations
Spark optimizations
Job Scheduling, Map-side joins, Filtering, Large Containers

Join reuse framework
Reuse joins across multiple training iterations (eg.
hyperparameter tuning)

Engineering

Pipelines at scale
Are 1000s of Pipelines are producing reliable
features ?

How can we avoid debugging of issues at
Training time ?

How can we enforce accountability ?

Engineering

Uber Data Quality
Metadata

Lineage

Tiering

Test Registration

Ownership

Engineering

Tying to ML Quality

Feature Store
Auto-onboard for
Data Quality

Michelangelo
Model
Score
Data Quality as
score component

Leadership
Visibility
Poor scoring
models flagged

Engineering

Discovery at Scale
How to choose relevant features from
repository of 100K+ ?

How do we avoid redundant building of
features ?

Engineering

Feature Store Search
Search by entity, key, name, etc.

Engineering

Data Browser
Stats, Data quality Lineage

Engineering

Automatic Feature Search

Mutual Information:
Feature and Label

Entropy of a feature
Search Feature Store by
Join Key, rank by MI

Michelangelo
Training
workflow

Engineering

Where we’re headed
Recommendation Systems
Uber Search Engine
Inline execution of Models

Feature Intelligence
Lineage across Data and ML
Data Mining tools

Embeddings
Vector types, Versioning,
Discovery

Near real-time features
Aggregation infra
Seamless backfills

Engineering

Thank you!
Do you have any questions?

https://www.linkedin.com/in/amitabh-nene/

https://www.linkedin.com/in/bmarcott/

