HopsFS-S3: Extending Object Stores with POSIX-like
Semantics and more (industry track)

Mahmoud IsmailT* Salman Niazi~ Gautier Berthou” Mikael Ronstrém1E
Seif Haridi'"* Jim Dowling "

TKTH - Royal Institute of Technology Logical Clocks AB

¥ Oracle AB

{maism,haridi,jdowling}@kth.se {mahmoud,salman,gautier,seif,jim}@logicalclocks.com mikael.ronstrom@oracle.com

Abstract

Object stores have become the de-facto platform for storage
in the cloud due to their scalability, high availability, and
low cost. However, they provide weaker metadata semantics
and lower performance compared to distributed hierarchical
file systems. In this paper, we introduce HopsFS-S3, a hy-
brid distributed hierarchical file system backed by an object
store while preserving the file system’s strong consistency
semantics. We base our implementation on HopsFS, a next-
generation distribution of HDFS with distributed metadata.
We redesigned HopsFS’ block storage layer to transparently
use an object store to store the file’s blocks without sacrific-
ing the file system’s semantics. We also introduced a new
block caching service to leverage faster NVMe storage for
hot blocks. In our experiments, we show that HopsFS-S3
outperforms EMREFS for IO-bound workloads, with up to 20%
higher performance and delivers up to 3.4X the aggregated
read throughput of EMRFS. Moreover, we demonstrate that
metadata operations on HopsFS-S3 (such as directory re-
name) are up to two orders of magnitude faster than EMRFS.
Finally, HopsFS-S3 opens up the currently closed metadata
in object stores, enabling correctly-ordered change notifi-
cations with HopsFS’ change data capture (CDC) API and
customized extensions to metadata.

ACM Reference format:

Mahmoud Ismail, Salman Niazi, Gautier Berthou, Mikael Ronstrom,
Seif Haridi, Jim Dowling. 2020. HopsFS-S3: Extending Object Stores
with POSIX-like Semantics and more (industry track). In Proceedings
of 21st International Middleware Conference Industrial Track, Delft,
Netherlands, December 7-11, 2020 (Middleware 20 Industrial Track),
8 pages.

DOI: 10.1145/3429357.3430521

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Middleware °20 Industrial Track, Delft, Netherlands

© 2020 ACM. 978-1-4503-8201-4/20/12...$15.00

DOI: 10.1145/3429357.3430521

1 Introduction

Cloud service providers such as Amazon [9], Google [28],
and Microsoft [37] offer object stores as a cheap, scalable, and
highly available storage alternative to distributed hierarchi-
cal file systems [21, 25]. However, to yield scalability, these
object stores offer a flat namespace and a weaker metadata
semantics compared to POSIX-like distributed hierarchical
file systems such as HDFS [45], and HopsFS [40]. These
object stores typically provide REST APIs where objects
(files) are identified by a key (path). For instance, Amazon
S3 provides an eventually consistent semantics for opera-
tions such as read after write, directory listing, and rename
objects or directories [2, 10, 22]. Alternative object stores
such as Google Cloud Storage and Microsoft Azure blob
store have strengthened the consistency semantics of the
S3 APIs using a horizontally scalable and strongly consis-
tent metadata layer [20, 27, 29]. However, they still lack
the native support for atomic directory rename [15, 24, 44],
which is a crucial operation for scalable SQL systems on
Hadoop/Spark [11, 12, 23, 34]. Moreover, object stores offer
change notification services that allow applications to re-
act to change events on objects [3, 19, 26]. However, there
are no ordering guarantees for events across objects, requir-
ing application developers to implement their ordering on
top [5, 16].

On the other hand, distributed hierarchical file systems
offer POSIX-like file system semantics that ensures atomic
operations such as directory rename. HopsFS [40] is a next-
generation distribution of HDFS [45] with a distributed meta-
data layer allowing HopsFS to scale to more massive clusters
with more metadata than HDFS. A HopsFS cluster consists of
three main layers: the metadata storage layer, the metadata
serving layer, and the block storage layer. The block stor-
age layer is responsible for storing the file system’s blocks
on local disk volumes on the block storage servers. HopsFS
provides a change data capture (CDC) API that produces
correctly-ordered file system operations [36]. HopsFS lacks
native support for object stores as a storage backend for
the block storage layer, increasing its cost and limiting its
adoption in cloud environments.

In this paper, we introduce HopsFS-S3 as a hybrid dis-
tributed hierarchical file system that offers POSIX-like file

Middleware 20 Industrial Track, December 7-11, 2020, Delft, Netherlands

system semantics while transparently using object stores
as the backend storage for the file system’s data. We lever-
age the heterogeneous storage APIs provided by HopsFS
to implement a cloud storage type enabling fine-grained
control over which part of the file system namespace to be
stored in the cloud. Our implementation allows the block
storage servers to be used as proxy servers to handle access
to object stores in the cloud. To improve performance by
avoiding unnecessary round trips to the object stores, we
implemented a block cache on the block storage servers and
a block selection policy on the metadata servers to ensure
the locality of block data reads. Our caching layer exploits
the relative higher performance of NVMe drives compared
to object stores (such as S3). We also examined the different
file system operations and redesigned them to ensure high
performance and strong consistency on object stores. To the
best of our knowledge, HopsFS-S3 is the first distributed hi-
erarchical filesystem that supports tiered storage from small
files in metadata [41], cached blocks on NVMe storage, and
other blocks in object storage. Moreover, HopsFS-S3 provides
a pluggable architecture allowing different object stores such
as Amazon S3, Google cloud storage, and Azure blob store
to be used as a storage backend. In this paper, we focus our
discussion on Amazon S3 since it is the most widely used
object store in the cloud. Finally, HopsFS-S3 leverage HopsFS
to open up the currently closed metadata in object stores, en-
abling correctly-ordered change notifications with HopsFS’
change data capture (CDC) and customized extensions to
metadata [36, 40].

2 Background and Related work

HopsFS is an open-source next-generation distribution of
HDEFS that mitigates the HDFS scalability bottlenecks by stor-
ing the file system metadata in a distributed database [40].
In HopsFS, the metadata storage layer is a distributed data-
base that is responsible for storing the file system’s meta-
data, see Figure 1. HopsFS provides a pluggable architec-
ture using the data access layer (DAL), allowing different
distributed databases to be used, however, the default and
recommended distributed database is NDB [38]. NDB is an
in-memory, shared-nothing, distributed database. The meta-
data serving layer is responsible for executing parallel file
system requests from potentially thousands of clients. The
metadata servers are stateless, and they communicate only
through the leader election protocol to elect a leader that
is responsible for housekeeping operations of the file sys-
tem [39, 40]. HopsFS leverages NVMe disks to store the small
files, < 128KB, embedded in the metadata in the metadata
storage layer [41]. The block storage layer is responsible for
storing large files, > 128K B, where the files are split into
blocks typically of 128 MB size and replicated across block
storage servers. HopsFS lacks support for object stores as a
storage backend for the file system’s data.

M. Ismail et al.

Amazon S3 does not implement a POSIX file system APL
For scalability, it provides eventual consistency guarantees
for many operations: objects (files) may not be immediately
available after creation due to negative caching, and older
versions of the objects may be available after an update or
a delete operation [10]. Also, directory rename and direc-
tory delete operations are not atomic. In fact, Amazon S3
does not have directories per se. To address these limita-
tions, connectors have been developed to strengthen the S3
API with POSIX-like semantics. Hadoop offers file system
connectors to different object stores such as Amazon S3 us-
ing the S3A connector [32]. S3A is a file system connector
that allows reading and writing to Amazon S3. S3A uses
the S3Guard [44] to mitigate the issues introduced by the
relaxed semantics of Amazon S3. Internally, S3Guard uses a
consistent database (Amazon DynmaoDB [1]) to keep track
of the metadata for the objects stored in Amazon S3 to im-
prove performance of operations such as directory listing
and file status. The S3A connector mimics a directory by
adding it to the S3Guard, and for any upcoming operation,
it will check all the keys that have this directory path as a
prefix in the key. Directory rename is an essential operation
that is used as part of the commit protocols for scalable SQL
systems on Hadoop/Spark. That is why S3A implements a
commiit protocol that can work with S3 without introducing
inconsistencies [31]

Amazon offers Elastic MapReduce (EMR) as a cloud-native
big data platform to simplify running of big data frameworks
such as Apache Hadoop and Apache Spark on AWS [8]. The
storage layer of EMR supports the use of different file sys-
tems, including HDFS, the local file system connected to the
instances, and the EMR file system (EMRFS) [6]. EMRFS is
an implementation of HDFS that stores the files in Amazon
S3. Similar to S3A, EMRFS implements a consistent metadata
layer on top of S3 to mitigate the S3 relaxed consistency
semantics [4]. Also, EMRFS implements an S3 optimized
commit protocol, however, it only supports running Spark
jobs that use Spark SQL, DataFrames, or Datasets to write
Parquet files. [7].

Microsoft offers Azure Data Lake Store (ADLS) [17, 43]
as a cloud storage service that builds upon features from
hierarchical file systems and object stores, more specifically
Azure Blob Storage. Similar to HopsFS, ADLS provides a
hierarchical namespace, tiered storage, and atomic metadata
operations such as directory rename and delete. Also, simi-
lar to HopsFS, ADLS uses a strongly consistent, relational,
distributed database to manage the file system’s metadata.
ADLS provides a small append service to improve the per-
formance of small appends (a few bytes to a few hundred
KB), however, it does not tackle the storage problem of small
files [18]. On the other hand, HopsFS embeds small files
(< 128Kb, a configurable limit) within the file system’s meta-
data [41].

HopsFS-S3

Metadata
Storage

HDFS/ Metadata
HopsFS Serving
Clients
DNs Block
N N N] | Storage

Object Store

Figure 1. An architecture diagram of HopsFS-S3. The main difference be-
tween HopsFS and HopsFS-S3 is that the block storage servers can act as
proxy servers for cloud object stores.

3 HopsFS-S3

We designed HopsFS-S3 as an extension to HopsFS to enable
the use of object stores as a storage backend for the file sys-
tem’s data. There are two design alternatives either to allow
the HopsFS clients to interact directly with the object store
APIs or to use the block storage servers as proxy servers to
object stores. The former design breaks the compatibility
with HDFS clients, requires more maintenance, and raises
some security concerns regarding giving the clients access
to the object store directly. We favor the latter approach
since it does not break the comparability of the current
HDFS clients, and it is easier to implement and maintain
its consistency using the metadata servers. Also, it enables
the use of a pluggable architecture allowing plugging other
object stores easily. HopsFS implements heterogeneous stor-
age APIs similar to HDFS [30] to treat block storage servers
(datanodes) as a collection of storage types such as DISK,
SSD, and RAM_DISK. In HopsFS-S3, we implement a new
storage type called “CLOUD” that leverages the heteroge-
neous storage APIs allowing users to set the storage policy
to be “CLOUD” on a directory in the file system namespace.
That is, all files under that directory will be stored in the
cloud. Currently, Amazon S3 and Azure Blob Storage are
supported; however, HopsFS-S3 offers a pluggable architec-
ture allowing implementations of other object stores such
as Google Cloud Storage.

Amazon S3 introduces the concepts of buckets, objects,
and keys. A bucket is a container for objects stored in S3,
and it has a unique global name. Objects are the basic enti-
ties in S3 that represent the users’ uploaded data. An object
is uniquely identified by its bucket name, key, and version,
while the key is the unique identifier for an object within the
bucket [10]. In HopsFS-S3, we added configuration param-
eters to allow users to provide their Amazon S3 bucket to
be used as the block data store. Similar to HopsFS, HopsFS-
S3 stores the small files, < 128K B, associated with the file
system’s metadata. For large files, > 128K B, HopsFS-S3 will

Middleware ’20 Industrial Track, December 7-11, 2020, Delft, Netherlands

store the files in the user-provided bucket. We identified the
file system operations in HopsFS, see Section 3.1, then we
redesigned those operations to work with object stores, more
specifically Amazon S3, see Section 3.2

3.1 HopsFS operations

We divided the file system operations into two categories,
metadata operations, and data operations. Metadata opera-
tions only interact with the file system’s metadata without
the need to read or write the actual data compared to the
data operations. For example, mkdir is a metadata operation
that creates a directory while file read is a data operation that
reads file’s content. HopsFS provides a strongly consistent
file system semantics through the use of primitive locking
and application-defined locking [40].

3.2 HopsFS-S3 operations

HopsFS-S3 uses the same metadata storage and serving lay-
ers as HopsFS. Therefore, the metadata operations are not
affected by the new changes regarding data storage. However,
we extended the file system’s metadata to include informa-
tion about each block, whether stored locally or in the cloud,
and in which bucket it is stored. On the other hand, we re-
designed the data operations to work with Amazon S3. S3
offers read-after-write consistency semantics for uploading
new objects given that there was no get operation on the
same key that happened shortly before uploading, otherwise
eventual consistency semantics hold. That is any subsequent
get operation to read the object might not return the object.
Moreover, overwriting an existing object, deleting an object,
and listing objects are eventually consistent. In HopsFS-S3,
we maintain the same strong consistency as HopsFS. There-
fore, we designed the file system data operations to enforce
strong consistency on Amazon S3. That is, we ensure that all
the objects stored in the S3 bucket are immutable. HopsFS-
S3 implements variable-sized block storage to allow for any
new appends to a file to be treated as new objects rather
than overwriting existing objects.

In HopsFS-S3, the writing process proceeds similarly to
HopsFS, where the file is split into blocks of fixed size, and
the blocks are written to the block storage servers. However,
instead of using the chain replication to replicate the blocks
across 3 servers, we set the replication factor to 1 and use
only one server that will transparently write the block to
S3. The object stores maintain the fault tolerance and high
availability of the stored objects. If the block storage server
fails during a write operation, the client reschedules the write
on a different live server. To read a file, clients in HopsFS-S3
proceed as in HopsFS by first requesting the set of block
storage servers from a metadata server to start reading the
file. However, since the file is stored in S3, metadata servers
return either a block storage server with the cached blocks
or a random block storage server that will transparently
connect to S3 to return the requested blocks for the file to

Middleware ’20 Industrial Track, December 7-11, 2020, Delft, Netherlands

the client. Each block storage server maintains a block cache
where it saves the downloaded blocks to reduce the network
overhead, see Section 3.2.1. The metadata servers keep track
of the cached blocks on the block storage servers to allow for
faster reads by sending the block storage servers with cached
blocks to the client instead of a random block storage server.
We also implement a synchronization protocol to ensure the
consistency between the blocks stored in the cloud and the
metadata stored in HopsFS-S3.

3.2.1 Block cache

The block storage servers act as proxy servers that transpar-
ently read/write objects to/from object stores (Amazon S3).
We implement a least recently used (LRU) cache per block
storage server to cache the blocks read from Amazon S3. The
objects are immutable, and all the file system operations go
through the metadata servers that use the metadata stored in
the metadata storage layer to evaluate the operation. Thus,
ensuring the strong consistency of the file system metadata.
The block storage servers ensure the validity of the cache
by first checking the existence of the block in the cloud be-
fore returning the cached block to the client. The metadata
servers implement a block selection policy that ensures the
locality of block read operations. The selection policy always
favors choosing the block storage servers where the blocks
are cached then random block storage servers.

4 FEvaluation

In this section, we evaluate the performance of HopsFS-S3
against Amazon EMRFS. All the experiments were run on
virtual machines of type c¢5d.4xlarge on Amazon EC2 with 16
vCPUs, 32 GB of memory, and 1 NVMe SSD disks (400 GB).
HopsFS-S3 is based on HopsFS version 3.2.0, which is compat-
ible with Hadoop version 3.2. We used Amazon EMR version
6.0.0 with Hadoop version 3.2.1. We created a cluster with
5 nodes (1 master node and 4 core nodes). The master node
runs the metadata and resource management services, while
the core nodes run the block storage and node management
services. We used three different benchmarks to compare the
performance of HopsFS-S3 and EMRFS. The Terasort bench-
mark provided by Hadoop [13, 42], TestDFSIOEnh provided
by Hibench [33, 35], and the hdfs command-line tool. To en-
sure a fair comparison, we matched the configurations of the
resource and node management services between HopsFS-S3
and EMRFS.

4.1 Terasort

The Terasort benchmark is a MapReduce based sorting algo-
rithm that has been used by Hadoop clusters to compete in
the annual sorting competition [46] to sort 1 TB of data. The
program consists of three main MapReduce jobs; Teragen,
Terasort, and Teravalidate. The Teragen program is respon-
sible for generating the input data to be sorted. The Terasort
program does the actual sorting of the input data and then

M. Ismail et al.

Time (seconds)

0 20 40 60 80 100 120
EMRFS
g 4
HopsFS-S3 B gc%
HopsFS-S3 =]
(NoCache) I
0__20 40 60 80 100 120 140 160 180
g
EMRFS _ 2
g £
HopsFS-S3 %
HopsFS-S3 @ I
(NoCache)
—
o
15
<
1N
s
%
el
EMRFS ~ H
e
HopsFS-S3 §
HopsFS-S3 Q
(NoCache)

Figure 2. The time taken by EMRFS and HopsFS-S3 clusters to run the
Terasort benchmark for input data sizes (1GB, 10GB, and 100GB)

writes the sorted data back. The Teravalidate program checks
the sorted results to ensure the total order of the data. We ran
the Terasort benchmark on EMRFS and HopsFS-S3 clusters
for different input data sizes (1GB, 10GB, and 100GB). For
HopsFS-S3, we ran two configurations enabling and disabling
the block cache on block storage servers. Then, we calcu-
lated the time taken by each stage of the Terasort benchmark,
as shown in Figure 2. HopsFS-S3 with block cache enabled
delivers lower running time compared to EMRES by 17% for
1GB, 20% for 10GB, and 18% for 100GB. The main reason
for the performance increase of HopsFS-S3 is that the block
reads will only go to S3 if the block is not present locally
in the block cache of the block storage servers, which we
can confirm using the utilization figures in Section 4.1.1.
HopsFS-S3 ensures the selection of block storage servers
with locally cached blocks when serving client read requests.
Figure 2 also shows that HopsFS-S3 with cache disabled have
a higher running time compared to EMRFS by 6% for 1GB, 4%
for 10GB, and 12% for 100GB. The main reason for the higher
running time is the indirection introduced by HopsFS-S3 to
read the blocks through the block storage servers, which act
as proxy servers for S3.

4.1.1 Utilization

We collected the master and core nodes’ utilization data
when running the Terasort benchmark using an input data
size of 100GB. Figure 3(a) shows the average CPU utilization
on the master node. We can see that the master nodes are
hardly doing any work since all the work happens on the
core nodes. Figure 3(b) shows the average CPU utilization on
the core nodes for different stages of the Terasort benchmark.

HopsFS-S3
EMRFS mmmm HopsFS-S3 B2 HopsFS-S3 (NoCache) mmmm
(a) Master node (b) Core node
100 T T T 100
80 - 1 80 -
60 - 1 60 -
e
2
&=
)
40 1 40
20 - 1 20
ol ohbh dow i o
gen sort validate gen sort validate

Figure 3. The average CPU utilization on master and core nodes for different
stages of the Terasort benchmark using 100GB of input data.

EMRES has a higher CPU load on the core nodes compared to
HopsFS-S3, whether the block cache is enabled or disabled.

Figure 4(a) shows the average network write throughput
on the core nodes. HopsFS-S3 and EMRFS have a similar
write throughput for all three stages. On the other hand,
HopsFS-S3 with cache enabled have a lower network read
throughput compared to EMRES due to the use of the block
cache on the block storage servers of HopsFS-S3, as shown in
Figure 4(b). Figure 4(c) shows the average disk write through-
put on the core nodes for HopsFS-S3 and EMRFS. HopsFS-
S3(NoCache) has significantly higher throughput on the Ter-
avalidate stage compared to EMRFS and HopsFS-S3 with
cache enabled. The reason is that when HopsFS-S3(NoCache)
reads blocks, it always downloads the blocks from S3 and
writes them to disk before sending them back to the client.
HopsFS-S3 has a higher disk read throughput compared to
EMREFS and HopsFS-S3(NoCache), as shown in Figure 4(d),
due to the use of the block cache on the block storage servers.
Figure 5 shows the average disk and network reading/writing
throughput on the master node for all different stages of the
Terasort benchmark. Both HopsFS-S3 and EMRES have a low
network and disk utilization, less than 1MB/sec.

EMRFS mmmm HopsFS-S3 E== HopsFS-S3 (NoCache) mmmm

(a) Network Write (b) Network Read

800 [j j j 1 800
700 F 4 700 F

600 [1 600 [
500 | 1 500 |
400 | 400 -
300 | 300 |
200 |
100 |

MB/sec

200 |
100 -

gen sort validate gen sort validate
(c) Disk Write (d) Disk Read
800 - j j j 4 800 |
700 - 1 700 |
., 600 f 4 600 f
% 500 - 4 500
@ 400 F 1 400
= 300 - 4 300 f
200 4 200 [
100 - 1 100 -
0 0

gen sort validate gen sort validate
Figure 4. The average Disk and Network utilization on core nodes for

different stages of the Terasort benchmark using 100 GB of input data.

Middleware ’20 Industrial Track, December 7-11, 2020, Delft, Netherlands

EMRFS HopsFS-S3 B2 HopsFS-S3 (NoCache) mmmm

(a) Network Write
1000 T T T 1000

(b) Network Read

800 - 1 800 [

g 600 [4 600 [
~
S 400 b 4 400 b
200 - 4 200 F
0 0
gen sort validate gen sort validate

(c) Disk Write

(d) Disk Read

1000 1000

800 800 -

600 600 -

400 -
200 -
0 . - I

gen sort validate gen
Figure 5. The average Disk and Network utilization on master node for

different stages of the Terasort benchmark using 100 GB of input data.

KB/sec

400
200

0

sort validate

4.2 TestDFSIOEnh

In this experiment, we used the enhanced DFSIO bench-
mark provided by the Hibench benchmarking suite [35]. The
benchmark creates a set of map tasks that are, in parallel,
writing/reading files to/from HopsFS-S3 and EMRFS clusters,
and then records the total time taken, average throughput
per map task, and the average aggregated throughput of
the cluster. We ran the TestDFSIOEnh using 1GB files while
varying the number of concurrent map tasks (16, 32, 64).
HopsFS-S3 takes almost the same amount of time as EM-
RFS to write files at a low concurrency level (16); however,
the time increases by 20% when running 32 concurrent tasks,
and 10% when running 64 concurrent tasks, as shown in Fig-
ure 6(a). The reason for the time increase is that the metadata
server in EMRFS writes the data directly to S3 while, in the
case of HopsFS-S3, the metadata server redirects the write to
the block storage servers, which in turn writes the data to S3.
On the other hand, HopsFS-S3 takes less time to read files,
by up to 54% compared to EMRFS, as shown in Figure 6(b).
Figure 7(a) shows that HopsFS-S3 has a lower average aggre-
gated throughput, by up to 39% when writing files, compared
to EMRFS. However, for HopsFS-S3 (NoCache), we show
that HopsFS-S3 average aggregated throughput is almost the
same as EMRFS and even higher when running 64 concurrent
tasks. That is due to the high variability of the benchmark
aggregated throughput results, as shown in the error bars,
which is not that case when looking at the actual average

EMRFS HopsFS-S3 =28 HopsFS-S3 (NoCache) Emmm
(a) Write (b) Read

100 T T T 100
= 80 80
e
£
S 60 60
2
o 40 40
E
=20 20

0 0

16 32 64 16 32 64

No of concurrent tasks No of concurrent tasks
Figure 6. The total execution time taken by enhanced DFSIO tasks to
concurrently write and read files of size 1GB to HopsFS-S3 and EMRFS

clusters.

Middleware ’20 Industrial Track, December 7-11, 2020, Delft, Netherlands

EMRFS HopsFS-S3 B2 HopsFS-53 (NoCache) mmmm

(a) Write (b) Read
3000 T 6000 T

2500 <1 5000

2000 < 4000

1500 <1 3000

MB/Sec

1000 [<1 2000

500 1 1000

6 32 64 6 32 64

No of concurrent tasks No of concurrent tasks
Figure 7. The average aggregated throughput of HopsFS-S3 and EMRFS
clusters to write and read files of size 1 GB using the enhanced DFSIO
benchmark.

write throughput per map task as shown in Figure 8(a). On
the other hand, Figure 7(b) shows that HopsFS-S3 has a
higher average aggregated throughput when reading files
by up to 3.4X times compared to the throughput of EMRFS
at low concurrency levels, and it decreases to 1.7X at higher
concurrency levels. Similarly, Figure 8(b) shows the average
read throughput per map task for both clusters.

4.3 Metadata operations

In this experiment, we used the enhanced DFSIO to create
directories with 1000 and 10, 000 files. Then, we used the
HDFS command line tool [14] to run directory listing and
rename on those directories, and recorded the average time
taken by each operation. Notice that the time reported in-
cludes the startup time of the JVM. Figure 9(a) shows that
HopsFS-S3 executes directory rename in two orders of mag-
nitude lower time than EMRFS. The main reason for the
huge performance gap is that EMRFS does not support direc-
tory rename. Instead, it does an expensive move operation
to rename all the directory’s descendent children and their

EMRFS mmm HopsFS-53 E= HopsFS-S3 (NoCache) ==

(a) Write (b) Read
500

140 -

400 -

300 |

MB/Sec

200 |

100 |

0
16 32 64 16 32 64
No of concurrent tasks

No of concurrent tasks
Figure 8. The average throughput per map task of HopsFS-S3 and EMRFS
clusters when writing and reading files of size 1 GB using the enhanced
DFSIO benchmark.

M. Ismail et al.

EMRFS sl HopsFS-S3
(a) Move/Rename dir (b) List dir
1000 10

400

100

40

Time (seconds)

1
1000 10000 1000 10000

No of Files No of Files

Figure 9. The average time taken by HopFS-S3 and EMREFS to execute
directory listing and directory rename on directories with different number
of children. The Y-axis is in log scale base 10.

transitive children. However, in HopsFS-S3, the directory
rename operation is a metadata operation that only changes
the metadata of the directory itself. Figure 9(b) shows that
HopsFS-S3 takes, on average, 50% the time taken by EMRFS
to execute the directory listing. The directory listing opera-
tion is a metadata operation in HopsFS-S3 and EMRFS; that
is, it does not require contacting S3. HopsFS-S3 retrieves the
directory’s children from the metadata storage layer, while
EMREFS retrieves this information from the metadata table in
DynamoDB. Due to space considerations and the existence
of previous published performance figures [41], we have not
included experiments comparing small file performance in
HopsFS-S3 and EMRFS. Given that small file operations in
HopsFS-S3 are metadata operations, they again significantly
outperform small file operations in S3.

5 Conclusions

We introduced HopsFS-S3, a hybrid cloud-native distributed
hierarchical file system that allows the use of object stores
as a storage backend for the file system’s data without sac-
rificing the file system’s consistency. HopsFS-S3 provides
fine-grained APIs allowing users to enable cloud storage pol-
icy on a per-directory basis. Also, HopsFS-S3 offers a plug-
gable architecture allowing implementations using other
object stores. In our experiments, we show that HopsFS-S3
outperforms EMRFS by up to 20% when running Tereasort
benchmarks. Also, we show that HopsFS-S3 delivers up to
3.4X the aggregated read throughput of EMRFS. Moreover,
we demonstrate that directory listing operations on HopsFS-
S3 are up to 50% faster than on EMRFS, and directory rename
operations are two orders of magnitude faster than EMRFS.
To the best of our knowledge, HopsFS-S3 is the first hierar-
chical distributed POSIX-like filesystem with multi-tiered
file storage at metadata, block cache, and object store layers,
as well as customizable metadata.

Acknowledgements

This work was funded by the EU Horizon 2020 project Hu-
man Exposome Assessment Platform (HEAP) under Grant
Agreement no. 874662.

HopsFS-S3

References

(1]

(11]

(12]

(13]

(16]

(17]

(18]

(19]

[20]

Amazon 2020. Amazon DynamoDB. https://aws.amazon.com/
dynamodb. (2020). [Online; accessed 12-Mar-2020].

Amazon 2020. Amazon S3. https://aws.amazon.com/s3. (2020). [On-
line; accessed 12-Mar-2020].

Amazon 2020. Configuring Amazon S3 event notifica-
tions. https://docs.aws.amazon.com/AmazonS3/latest/dev/
NotificationHowTo.html. (2020). [Online; accessed 4-Sep-2020].
Amazon 2020. EMRES Consistent https://
docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-
consistent-view.html. (2020). [Online; accessed 12-Mar-2020].
Amazon 2020. Event message structure. https://
docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-
structure.html. (2020). [Online; accessed 4-Sep-2020].

Amazon 2020. Use EMR File System (EMRES). https://
docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html.
(2020). [Online; accessed 12-Mar-2020].

Amazon 2020. Using the EMRFS S3-optimized Committer.
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-
s3-optimized-committer.html. (2020). [Online; accessed 4-Sep-2020].
Amazon 2020. What Is Amazon EMR? https://docs.aws.amazon.com/
emr/latest/ManagementGuide/emr-what-is-emr.html. (2020). [On-
line; accessed 12-Mar-2020].

Amazon EC2 2019. Amazon EC2. https://aws.amazon.com/ec2/. (2019).
[Online; accessed 5-Jan-2019].

Amazon S3 Consistency Model 2019.
tency Model. https://docs.aws.amazon.com/AmazonS3/latest/dev/
Introduction.html. (2019). [Online; accessed 5-Jan-2019].

Apache 2019. Apache Hudi: Upserts And Incremental Processing on
Big Data. http://hudi.apache.org/. (2019). [Online; accessed 12-Sep-
2019].

Apache 2019. Apache Iceberg: open table format for huge analytic
datasets. https://iceberg.incubator.apache.org/. (2019). [Online;
accessed 12-Sep-2019].

Apache 2020. Apache hadoop examples: Terasort bench-
mark. https://hadoop.apache.org/docs/current/api/org/apache/
hadoop/examples/terasort/package-summary.html. (2020). [Online;
accessed 4-Sep-2020].

Apache 2020. HDFS Commands Guide. https://
hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HDFSCommands.html. (2020). [Online; accessed 4-Sep-2020].
Azure 2019. Hadoop Azure Support: Azure Blob Stor-
age. https://hadoop.apache.org/docs/r3.1.2/hadoop-azure/
index.html#Atomic_Folder_Rename. (2019). [Online; accessed
12-Sep-2019].

Azure 2020. Azure Blob Storage as an Event Grid source.
https://docs.microsoft.com/en-us/azure/event-grid/event-schema-
blob-storage. (2020). [Online; accessed 4-Sep-2020].

Azure 2020. Introduction to Azure Data Lake Storage Gen2.
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-
storage-introduction. (2020). [Online; accessed 4-Sep-2020].

Azure 2020. Optimize Azure Data Lake Storage Gen2 for perfor-
mance. https://docs.microsoft.com/en-us/azure/storage/blobs/data-
lake-storage-performance-tuning-guidance#file-size. (2020). [Online;
accessed 4-Sep-2020].

Azure 2020. Reacting to Blob storage events. https:
//docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-
event-overview. (2020). [Online; accessed 4-Sep-2020].

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, and others. 2011. Windows Azure Storage: a
highly available cloud storage service with strong consistency. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 143-157.

View.

Amazon S3 Consis-

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Middleware ’20 Industrial Track, December 7-11, 2020, Delft, Netherlands

Databricks 2020. HDFS vs. Cloud Storage: Pros, cons and migration
tips. Top5ReasonsforChoosingS3overHDFS. (2020). [Online; accessed
11-Mar-2020].

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS operating systems
review, Vol. 41. ACM, 205-220.

Delta 2019. Delta Lake: Reliable Data Lakes at Scale. https://delta.io/.
(2019). [Online; accessed 12-Sep-2019].

Google 2019. Google Cloud Storage: mv - Move/rename objects.
https://cloud.google.com/storage/docs/gsutil/commands/mv. (2019).
[Online; accessed 12-Sep-2019].

Google 2020. HDFS vs. Cloud Storage: Pros, cons and migration
tips. https://cloud.google.com/blog/products/storage-data-transfer/
hdfs-vs-cloud-storage-pros-cons-and-migration-tips. (2020). [On-
line; accessed 11-Mar-2020].

Google 2020. Pub/Sub notifications for Cloud Storage. https://
cloud.google.com/storage/docs/pubsub-notifications. (2020). [Online;
accessed 4-Sep-2020].

Google Cloud Storage Consistency 2019. Google Cloud Storage Con-
sistency. https://cloud.google.com/storage/docs/consistency. (2019).
[Online; accessed 5-Jan-2019].

Google Compute Engine 2019. Google Compute Engine. https://
cloud.google.com/compute/. (2019). [Online; accessed 5-Jan-2019].
GoogleCloudPlatform 2019. How Google Cloud Storage offers
strongly consistent object listing thanks to Spanner. https:
//cloud.google.com/blog/products/gcp/how-google-cloud-storage-
offers-strongly-consistent-object-listing-thanks-to-spanner. (2019).
[Online; accessed 1-Jul-2019].

Hadoop 2020. Archival Storage, SSD, and Memory.
https://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/ArchivalStorage.html. (2020). [Online; accessed
12-Mar-2020].

Hadoop 2020. Committing work to S3 with the “S3A Commit-
ters”. https://hadoop.apache.org/docs/current/hadoop-aws/tools/
hadoop-aws/committers.html. (2020). [Online; accessed 12-Mar-
2020].

Hadoop 2020. Hadoop-AWS module: Integration with Amazon Web
Services. https://hadoop.apache.org/docs/current/hadoop-aws/tools/
hadoop-aws/index.html. (2020). [Online; accessed 12-Mar-2020].
HiBench 2020. HiBench Github repository. https://github.com/Intel-
bigdata/HiBench. (2020). [Online; accessed 4-Sep-2020].

Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N
Hanson, Owen O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and
Xiaodong Zhang. 2014. Major technical advancements in apache hive.
In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 1235-1246.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. 2010. The HiBench
benchmark suite: Characterization of the MapReduce-based data anal-
ysis. In 2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW 2010). 41-51.

M Ismail, M Ronstrom, S Haridi, and] Dowling. 2019. ePipe: Near Real-
Time Polyglot Persistence of HopsFS Metadata. In 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). 92-101.

Microsoft Azure 2019. Microsoft Azure. https://azure.microsoft.com.
(2019). [Online; accessed 5-Jan-2019].

MySQL Cluster CGE 2018. MySQL Cluster CGE. http://
www.mysql.com/products/cluster/. (2018). [Online; accessed 5-Jan-
2018].

Salman Niazi, Mahmoud Ismail, Gautier Berthou, and Jim Dowling.
2015. Leader Election Using NewSQL Database Systems. In Proceed-
ings of the 15th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems - Volume 9038. 158—-172.

https://aws.amazon.com/dynamodb
https://aws.amazon.com/dynamodb
https://aws.amazon.com/s3
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-consistent-view.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-consistent-view.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-consistent-view.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3-optimized-committer.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3-optimized-committer.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://hudi.apache.org/
https://iceberg.incubator.apache.org/
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
https://hadoop.apache.org/docs/r3.1.2/hadoop-azure/index.html##Atomic_Folder_Rename
https://hadoop.apache.org/docs/r3.1.2/hadoop-azure/index.html##Atomic_Folder_Rename
https://docs.microsoft.com/en-us/azure/event-grid/event-schema-blob-storage
https://docs.microsoft.com/en-us/azure/event-grid/event-schema-blob-storage
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-performance-tuning-guidance#file-size
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-performance-tuning-guidance#file-size
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-event-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-event-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-event-overview
Top 5 Reasons for Choosing S3 over HDFS
https://delta.io/
https://cloud.google.com/storage/docs/gsutil/commands/mv
https://cloud.google.com/blog/products/storage-data-transfer/hdfs-vs-cloud-storage-pros-cons-and-migration-tips
https://cloud.google.com/blog/products/storage-data-transfer/hdfs-vs-cloud-storage-pros-cons-and-migration-tips
https://cloud.google.com/storage/docs/pubsub-notifications
https://cloud.google.com/storage/docs/pubsub-notifications
https://cloud.google.com/storage/docs/consistency
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/blog/products/gcp/how-google-cloud-storage-offers-strongly-consistent-object-listing-thanks-to-spanner
https://cloud.google.com/blog/products/gcp/how-google-cloud-storage-offers-strongly-consistent-object-listing-thanks-to-spanner
https://cloud.google.com/blog/products/gcp/how-google-cloud-storage-offers-strongly-consistent-object-listing-thanks-to-spanner
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/committers.html
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/committers.html
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench
https://azure.microsoft.com
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

Middleware 20 Industrial Track, December 7-11, 2020, Delft, Netherlands

(40]

[41]

[42]

(43]

(4]

(45]

[46]

Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen
Grohsschmiedt, and Mikael Ronstrom. 2017. HopsFS: Scaling Hi-
erarchical File System Metadata Using NewSQL Databases. In 15th
USENIX Conference on File and Storage Technologies (FAST 17). USENIX
Association, 89-104.

Salman Niazi, Mikael Ronstrém, Seif Haridi, and Jim Dowling. 2018.
Size Matters: Improving the Performance of Small Files in Hadoop. In
Proceedings of the 19th International Middleware Conference (Middle-
ware ’18). 26-39.

Owen O’Malley. 2008. Terabyte sort on apache hadoop. Technical
Report. Yahoo.

Raghu Ramakrishnan, Baskar Sridharan, John R. Douceur, Pavan Kas-
turi, Balaji Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng
Li, Mitica Manu, Spiro Michaylov, Rogério Ramos, Neil Sharman,
Zee Xu, Youssef Barakat, Chris Douglas, Richard Draves, Shrikant S.
Naidu, Shankar Shastry, Atul Sikaria, Simon Sun, and Ramarathnam
Venkatesan. 2017. Azure Data Lake Store: A Hyperscale Distributed
File Service for Big Data Analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 51-63. DOI:
https://doi.org/10.1145/3035918.3056100

S3Guard 2019. S3Guard: Consistency and Metadata Caching
for S3A. https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/
hadoop-aws/s3guard.html. (2019). [Online; accessed 5-Jan-2019].
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The hadoop distributed file system. In Mass stor-
age systems and technologies (MSST), 2010 IEEE 26th symposium on.
Teee, 1-10.

Sort 2020. Sort Benchmark. http://sortbenchmark.org/. (2020). [Online;
accessed 4-Sep-2020].

M. Ismail et al.

https://doi.org/10.1145/3035918.3056100
https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3guard.html
https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3guard.html
http://sortbenchmark.org/

	Abstract
	1 Introduction
	2 Background and Related work
	3 HopsFS-S3
	3.1 HopsFS operations
	3.2 HopsFS-S3 operations

	4 Evaluation
	4.1 Terasort
	4.2 TestDFSIOEnh
	4.3 Metadata operations

	5 Conclusions
	References

