
Metarank:
Building an open-source LTR engine

on top of a feature store
1

This is us

This is NOT a sales talk: we want feedback
Working on personalization for almost 10 years

2

Personalization?
same items
different visitors
different item ordering

3

Offline vs Online
offline: ranking is affected by previous session
online: ranking is affected by past actions within session:

Mobile/desktop
Traffic source / Referer
Landing page
Previous clicks & searches

4

e-commerce

5

content

6

social

7

Personalization works!

8

Déjà vu
different companies
different contexts
different goals

9

same problems

10

Grebennikow's hierarchy of needs

11

Airbnb experience

https://medium.com/airbnb-engineering/
machine-learning-powered-search-ranking-of-airbnb-experiences-110b4b1a0789

12

https://medium.com/airbnb-engineering/machine-learning-powered-search-ranking-of-airbnb-experiences-110b4b1a0789

What are the options?

 ElasticSearch + ES-LTR + Spark + Python + ...

 Random shady SaaS from the internet

 Something else?

13

A tool to automate common parts
data model: clicks, impressions, metadata
feature extraction: UA, Referer, GeoIP, customer profiling
feature store: replay, bootstrap
typical LTR ML models: LambdaMART

14

Metarank
a swiss army knife of personalization

15

Short path

implements parts of all levels
only what's needed

16

Metarank

17

Metarank

18

Inside Metarank

19

Feature store pattern

online: low latency, low throughput
offline: whatever latency, high throughput 20

online: last version of values
offline: time travel, point-in-time join

21

Feature store: Offline part

22

Feature store: Offline part

23

Point-in-time join
join event with last value in the past - easy
join all events to all features -

Findify:
10M searches per day
24 products in search
50 features

24

2017

25

26

2021

27

28

Grebennikov's law
Any sufficiently complicated ML system contains an

ad hoc informally-specified bug-ridden
implementation of feature storage

29

Hops-feast-splice
Python API
Online/offline mode
Versioning, time travel

30

Hops-feast-splice

31

Hops-feast-splice

32

Feature store and Findify
Simplicity & no extra dependencies

Multi-tenancy
Performance

Most features have similar high-level types

33

Feature types
We need not just strings and numbers

Counter - # of clicks made by a customer
Periodic counter - # of clicks per day
Frequency - estimate % of US in the whole traffic
Statistics - estimate percentiles, min & max
Bounded list - last N customer clicks

34

35

Feature store and Findify
Cover just our needs
Tighter integration: Flink & Scala
FUN!

36

Apache Flink

Unified stream & batch processing
Stateful

37

stateful processing

persistent state: easy to upgrade
low-latency: no microbatches
rich DSL: windowing, aggregations

38

Unified processing
Same API for online/offline
different runtime semantics

39

Metarank

40

Open Source

Apache2 licensed, no strings attached
Single jar file, can run locally

41

Taking off

1. Import historical events: S3, HDFS, files
2. Export: state, latest features, training dataset
3. Train: XGBoost and LightGBM are supported
4. Inference: Apache Flink & Redis as backends

42

Event example
{

 "event": "metadata",

 "id": "81f46c34-a4bb-469c-8708-f8127cd67d27",

 "item": "product1",

 "timestamp": "1599391467000",

 "fields": [

 {"name": "title", "value": "Nice jeans"},

 {"name": "price", "value": 25.0},

 {"name": "color", "value": ["blue", "black"]},

 {"name": "availability", "value": true}

]

}

Metadata: what prior data we have?
Impression: what was displayed to visitor?
Interaction: which actions were performed?

43

No-code YAML feature setup
Goal: cover 90% most common ML features

feature extractors: compute ML feature value
feature store: add to changelog if changed
online serving: cache latest value for inference

44

Feature extractors: basic
// take a value from metadata

- name: vote_avg

 type: number

 scope: item

 source: metadata.vote_avg

 ttl: 60 days

45

Feature extractors: basic
// one-hot encode a string

- name: genre

 type: string

 scope: item

 source: metadata.genres

 values:

 - drama

 - comedy

 - thriller

46

Transformations
// length of the title field

- name: title_length

 type: word_count

 source: metadata.title

 scope: item

47

Special transformations
// one-hot encode mobile/desktop/tablet category

// from User-Agent field

- name: platform

 type: ua_platform

 source: impression.ua

48

Counters
// count how many clicks were done in current session

- name: click_count

 type: interaction_count

 scope: session

 interaction: click

49

More counters!
// A sliding window count of interaction events

// for a particular item

- name: item_click_count

 type: window_count

 interaction: click

 bucket_size: 24h // make a counter for each 24h rolling window

 windows: [7, 14, 30, 60] // on each refresh, aggregate to 1-2-4-8 week counts

 refresh: 1h

50

Profiling
// Does this user had an interaction before

// with other item with the same field value?

- name: clicked_color

 type: interacted_with

 interaction: click

 field: metadata.color

 scope: user

51

Rates: CTR & Conversion
// Click-through rate

- name: CTR

 type: rate

 top: click // divide number of clicks

 bottom: examine // to number of examine events

 scope: item

 bucket: 24h // aggregate over 24-hour buckets

 periods: [7, 14, 30, 60] // sum buckets for multiple time ranges

52

Normalization
// histogram sampled number normalization for price

- name: price

 type: relative_number

 method:

 type: estimate_histogram

 pool_size: 100 // for a pool size of 100

 sample_rate: 10 // we sample every 10th event in the pool

 bucket_count: 5 // so value will be mapped to 0-20-40-60-80-100 percentiles

 field: price

 source: item

53

Current status

MVP, not all feature extractors are implemented
Distributed mode is broken
A long backlog of ML tasks: click models, LTR, de-biasing

https://demo.metarank.ai

54

https://demo.metarank.ai/

Future

We built Metarank to solve our problem.

But it can be useful for others!

Describe your use-case
Report problems

55

Metarank

github.com/metarank/metarank
metarank.slack.com
linkedin.com/in/romangrebennikov/
linkedin.com/in/vgoloviznin/

56

https://github.com/metarank/metarank
https://metarank.slack.com/
https://linkedin.com/in/romangrebennikov/
https://linkedin.com/in/vgoloviznin/

