
Metarank:
Building an open-source LTR engine

on top of a feature store
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This is us

This is NOT a sales talk: we want feedback
Working on personalization for almost 10 years
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Personalization?
same items
different visitors
different item ordering
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Offline vs Online
offline: ranking is affected by previous session
online: ranking is affected by past actions within session:

Mobile/desktop
Traffic source / Referer
Landing page
Previous clicks & searches
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e-commerce
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content
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social
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Personalization works!
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Déjà vu
different companies
different contexts
different goals
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same problems
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Grebennikow's hierarchy of needs
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Airbnb experience

https://medium.com/airbnb-engineering/
machine-learning-powered-search-ranking-of-airbnb-experiences-110b4b1a0789
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What are the options?

 ElasticSearch + ES-LTR + Spark + Python + ...

 Random shady SaaS from the internet

 Something else?
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A tool to automate common parts
data model: clicks, impressions, metadata
feature extraction: UA, Referer, GeoIP, customer profiling
feature store: replay, bootstrap
typical LTR ML models: LambdaMART
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Metarank
a swiss army knife of personalization
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Short path

implements parts of all levels
only what's needed
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Metarank
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Metarank
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Inside Metarank
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Feature store pattern

online: low latency, low throughput
offline: whatever latency, high throughput 20



online: last version of values
offline: time travel, point-in-time join
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Feature store: Offline part
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Feature store: Offline part
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Point-in-time join
join event with last value in the past - easy
join all events to all features - 

Findify:
10M searches per day
24 products in search
50 features
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2017
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2021
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Grebennikov's law
Any sufficiently complicated ML system contains an

ad hoc informally-specified bug-ridden
implementation of feature storage
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Hops-feast-splice
Python API
Online/offline mode
Versioning, time travel
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Hops-feast-splice
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Hops-feast-splice
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Feature store and Findify
Simplicity & no extra dependencies

Multi-tenancy
Performance

Most features have similar high-level types
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Feature types
We need not just strings and numbers

Counter - # of clicks made by a customer
Periodic counter - # of clicks per day
Frequency - estimate % of US in the whole traffic
Statistics - estimate percentiles, min & max
Bounded list - last N customer clicks
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Feature store and Findify
Cover just our needs
Tighter integration: Flink & Scala
FUN!
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Apache Flink

Unified stream & batch processing
Stateful
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stateful processing

persistent state: easy to upgrade
low-latency: no microbatches
rich DSL: windowing, aggregations
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Unified processing
Same API for online/offline
different runtime semantics
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Metarank
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Open Source

Apache2 licensed, no strings attached
Single jar file, can run locally
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Taking off

1. Import historical events: S3, HDFS, files
2. Export: state, latest features, training dataset
3. Train: XGBoost and LightGBM are supported
4. Inference: Apache Flink & Redis as backends
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Event example
{ 

  "event": "metadata", 

  "id": "81f46c34-a4bb-469c-8708-f8127cd67d27", 

  "item": "product1", 

  "timestamp": "1599391467000", 

  "fields": [ 

    {"name": "title", "value": "Nice jeans"}, 

    {"name": "price", "value": 25.0}, 

    {"name": "color", "value": ["blue", "black"]}, 

    {"name": "availability", "value": true} 

  ] 

}

Metadata: what prior data we have?
Impression: what was displayed to visitor?
Interaction: which actions were performed?
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No-code YAML feature setup
Goal: cover 90% most common ML features

feature extractors: compute ML feature value
feature store: add to changelog if changed
online serving: cache latest value for inference
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Feature extractors: basic
// take a value from metadata

- name: vote_avg 

  type: number 

  scope: item 

  source: metadata.vote_avg 

  ttl: 60 days 
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Feature extractors: basic
// one-hot encode a string

- name: genre 

  type: string 

  scope: item 

  source: metadata.genres 

  values: 

  - drama 

  - comedy 

  - thriller 
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Transformations
// length of the title field

- name: title_length 

  type: word_count 

  source: metadata.title 

  scope: item 
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Special transformations
// one-hot encode mobile/desktop/tablet category  

// from User-Agent field 

 

- name: platform 

  type: ua_platform 

  source: impression.ua 
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Counters
// count how many clicks were done in current session 

 

- name: click_count 

  type: interaction_count 

  scope: session 

  interaction: click 
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More counters!
// A sliding window count of interaction events  

// for a particular item 

 

- name: item_click_count 

  type: window_count 

  interaction: click 

  bucket_size: 24h         // make a counter for each 24h rolling window 

  windows: [7, 14, 30, 60] // on each refresh, aggregate to 1-2-4-8 week counts 

  refresh: 1h 
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Profiling
// Does this user had an interaction before  

// with other item with the same field value? 

 

- name: clicked_color 

  type: interacted_with 

  interaction: click 

  field: metadata.color 

  scope: user 
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Rates: CTR & Conversion
// Click-through rate  

- name: CTR 

  type: rate 

  top: click      // divide number of clicks 

  bottom: examine // to number of examine events 

  scope: item 

  bucket: 24h     // aggregate over 24-hour buckets 

  periods: [7, 14, 30, 60] // sum buckets for multiple time ranges 
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Normalization
// histogram sampled number normalization for price

- name: price 

  type: relative_number 

  method: 

    type: estimate_histogram 

    pool_size: 100  // for a pool size of 100 

    sample_rate: 10 // we sample every 10th event in the pool  

    bucket_count: 5 // so value will be mapped to 0-20-40-60-80-100 percentiles 

  field: price 

  source: item 
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Current status

MVP, not all feature extractors are implemented
Distributed mode is broken
A long backlog of ML tasks: click models, LTR, de-biasing

https://demo.metarank.ai
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https://demo.metarank.ai/


Future

We built Metarank to solve our problem.

But it can be useful for others!

Describe your use-case
Report problems
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Metarank

github.com/metarank/metarank
metarank.slack.com
linkedin.com/in/romangrebennikov/
linkedin.com/in/vgoloviznin/
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