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ABSTRACT
Data management is the most challenging aspect of building Ma-
chine Learning (ML) systems. ML systems can read large volumes
of historical data when training models, but inference workloads
are more varied, depending on whether it is a batch or online ML
system. The feature store for ML has recently emerged as a single
data platform for managing ML data throughout the ML lifecycle,
from feature engineering to model training to inference.

In this paper, we present the Hopsworks feature store for ma-
chine learning as a highly available platform for managing fea-
ture data with API support for columnar, row-oriented, and sim-
ilarity search query workloads. We introduce and address chal-
lenges solved by the feature stores related to feature reuse, how
to organize data transformations, and how to ensure correct and
consistent data between feature engineering, model training, and
model inference. We present the engineering challenges in building
high-performance query services for a feature store and show how
Hopsworks outperforms existing cloud feature stores for training
and online inference query workloads.

1 INTRODUCTION
In 2017, Uber announced a platform called Michelangelo [51] that
creates and manages data for training and inference for their ma-
chine learning (ML) models, massively reducing the time it takes
for them to put and maintain ML models in production. Michelan-
gelo introduced their feature store for machine learning, Palette,
as a new class of data platform that provides high-performance
read and write of feature data for different workloads - from fea-
ture engineering to model training to model inference. Palette is a
dual-database system, with historical feature data stored in a data
warehouse and the latest feature data (used by online models) stored
in a key-value store. All existing commercial and open-source fea-
ture stores follow this same dual-database architecture, as a single
Hybrid transaction/analytical processing (HTAP) database has not
yet been shown to be capable of running the high throughput, low
latency workloads required by online models, such as personalized
recommendations [28, 49], and the massive data volumes and high
read bandwidth required when training models.
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Feature centralization (governance, security, search) and reuse
is another core capability of feature stores. Facebook reported that
in their feature store “most features are used by many models”,
and that the most popular 100 features are reused in over 100
different models [31]. The benefits of feature reuse include higher
quality features through increased usage and scrutiny, reduced
storage costs - Facebook reported using 1900 servers to store online
feature data for just 27% of their use cases - and reduced feature
development and operational costs, as models that reuse features
do not need new feature pipelines.

In this paper, we introduce the Hopsworks Feature Store, a highly
available data platform for managing feature data for ML that sup-
ports a mix of transactional, point-in-time analytical, and semantic
search queries. Hopsworks Feature Store addresses the data chal-
lenges in building ML systems and its contributions include:

(1) support for collaborative development of ML systems based
on centralized, governed access to feature data, along with a
new unified architecture for ML systems as feature, training
and inference pipelines;

(2) feature reuse through computing features once and reusing
them across multiple models;

(3) support formultiple feature computation frameworks - batch,
streaming, and request-time computation - enabling ML sys-
tems to be built based on their feature freshness require-
ments;

(4) a new taxonomy for data transformations based on the type
of feature they compute (a) reusable (model-independent)
features, (b) model-dependent features, and (c) request-time
features. Our taxonomy requires additional framework sup-
port to prevent skew between data transformation imple-
mentations reused in two or more ML pipelines;

(5) a query model for how to create training data, without fu-
ture data leakage, using an AsOf Left (outer) join, as well
as an implementation of a query service based on Arrow
Flight [10], DuckDB [39], and Apache Hudi [21] that outper-
forms publicly accessible managed feature stores in public
clouds;

(6) a query model for how to read precomputed features for
online inference as a set of parallel Left (outer) joins as well
as pushdown support for Left joins in RonDB [1];

(7) a query model for how to find similar features using vector
embeddings.

We discuss its novel design choices to address challenges 1-7.
Challenges 5 and 6 imply support for mixed columnar and row-
oriented workloads, with high throughput batch reads of feature
data, and low latency reads for online inference. To tackle this,
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Hopsworkswas built with a dual database architecturewithHopsFS-
S3 [23] and/or external data warehouses as the columnstore (called
the offline store), and RonDB as its rowstore (called the online
store). But Hopsworks now also has a vector database to enable
another common ML workload - similarity search. Hopsworks was
the first open-source feature store, and currently has thousands of
users, with customers that store over a petabyte of data on a single
Hopsworks cluster.

2 ML SYSTEMS WITH A FEATURE STORE
ML systems are platforms that manage data and models, help trans-
form data into features, and use ML models and features to make
predictions. Feature stores support three different types of ML sys-
tem:

• interactive ML systems make predictions in response to user
requests. They can combine features computed from request
parameters with precomputed features from the feature store
(providing history and context to user requests). They can
make sure features are fresh (less than a few seconds old) by
computing features on-demand from request input data or
by updating precomputed features in the feature store using
stream processing;

• batch ML systems run on a schedule, and read a batch of
precomputed features from the feature store, download a
trained model from a model registry, and make predictions
for all rows in the batch using the model. The predictions
are typically stored in some downstream database (inference
store), to be later consumed by ML-enabled applications;

• stream processing ML systems use an embedded model to
make predictions on streaming feature data, computed on-
demand. They may also enrich their feature data with his-
torical or contextual precomputed features retrieved from a
feature store.

2.1 Feature, Training, and Inference Pipeline
Architecture

Hopsworks was the first API-based feature store and it enabled a
new ML system architecture based on independent ML pipelines
that read and write from/to the feature store. This enabled a uni-
fied architecture, that we call the feature, training, inference (FTI)
pipeline architecture, to describe interactive, batch, and streaming
ML systems. In the FTI architecture, see figure 1, a ML system is
composed of three different independent ML pipelines that share
data by reading and writing to a common shared data layer - the
feature store and a model registry. These ML pipelines have well-
defined inputs and outputs can can be independently developed
and operated:

• a feature pipeline transforms input data into features that are
stored in the feature store;

• a training pipeline reads features and labels from the feature
store, trains a model, and outputs the trained model to a
model registry

• an inference pipeline reads new feature data and anMLmodel
as input and produces both predictions and prediction logs
as output.

Hopsworks supports many different types of feature pipelines
- batch programs in Python, Spark, SQL, and streaming pipelines in
Flink, Spark Streaming, and Beam. Feature pipelines typically do
not need specialized hardware to run, such as a GPU. The choice of
data processing framework is typically based on feature freshness
(how old can the precomputed feature data be that is made available
to models) and data volume requirements. Real-time ML systems
often use stream processing, while most other ML systems use
batch pipelines.

Training pipelines are typically Python programs that read
a consistent snapshot of training data from the feature store as
input, train a ML model (sometimes using hardware acceleration),
evaluate/validate the model, and then store the trained model in a
model registry.

Inference pipelinesmake predictions using the packagedmodel,
downloaded from the model registry, and features read from the fea-
ture store and/or computed from user input data. Inference pipelines
are typically implemented in Python, and when batch inference
pipelines need to process large volumes of inference data, PySpark
is often used.

2.2 Data Transformation Taxonomy
Data transformations create features from input data, but not all
classes of transformation can or should be applied in all of the
feature, training, and inference pipelines, see figure 1.We designed a
taxonomy that identifies three different types of data transformation
and in which ML pipelines those transformations can be applied:

• model-independent transformations convert input data into
one or more reusable features/labels that can subsequently
by used by one or more models;

• model-dependent transformations convert feature(s)/label(s)
into one or more encoded/scaled features/labels for use by a
single model;

• on-demand transformations convert request-time data (op-
tionally along with other parameters) into one or more
reusable features/labels for online models.

Model-independent transformations are implemented in
either batch or streaming feature pipelines. Examples of model-
independent data transformations include aggregations (windowed
counts/sum, avg, max, min, etc), embeddings, and binning. Text
chunking for large languagemodels (LLMs) is alsomodel-independent,
as different LLMs and retrieval augmented generation (RAG) stores
can reuse the text chunks. If the data volume is small, Python
frameworks such as Pandas or Polars are popular choices, but for
data volumes that don’t fit on a single machine, PySpark and Data
Warehouses (DBT/SQL) is popular for batch processing. For stream
processing, Flink, Beam, and Spark Streaming are widely used. The
choice of whether to implement a feature pipeline as a batch or
streaming program depends on the feature freshness requirements
- if the features need to be available for query in near real-time,
stream processing is needed. Model-independent transformations
are only applied in feature pipelines.

Model-dependent transformations are data transformations
that are specific to one model such as feature encoding/scaling.
They need to be applied in both training and batch/online infer-
ence pipelines, and as training and inference pipelines are separate
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Figure 1: ML Systems based on a feature store implement 3 ML pipelines: a feature pipeline, a training pipeline, and an inference
pipeline.

systems, there should be no offline/online skew between the data
transformations in training and inference. An example of a model-
dependent transformation is normalizing a numerical feature, as
is often done in gradient-descent based model for performance
reasons. However, the same numerical feature should not be nor-
malized for a decision tree model. Hence, normalization (and all
feature encoding/scaling, in general) is specific to onemodel. Model-
dependent transformations are also easily identified as they are
parameterized by the training dataset - before you can encode/s-
cale a feature, you first need a full pass of the training data, for
example, to compute the mean and standard deviation so that you
can normalize all feature values. Model-dependent transformations
should not be performed in a feature pipeline as they lead to write
amplification - every write to a feature store requires the existing
feature values to also be rewritten, as the new data writtenmay have
changed the mean/min/max/standard-deviation of a feature, so all
feature values now need to be transformed. In any case, exploratory
analysis of feature data is an important capability of feature stores,
and storing encoded feature data makes this extremely difficult for
data scientists. Another example of a model-dependent transfor-
mation is text tokenization for a LLM, as each LLM has their own
tokenization algorithm. Solutions to prevent training/serving skew
for model-dependent transformations include performing them in
pre-processing pipelines (Scikit-Learn, Keras, or PyTorch) or using
declarative transformations on a feature view, introduced in the
feature view section.

On-demand transformations are performed in online infer-
ence pipelines and require request-time data to be computed (they
can also use other external or historical data as input parameters).
The same on-demand transformation can also be performed in a
feature pipeline to process historical data and create resuable fea-
tures. In contrast to model-dependent transformations, on-demand
transformations are not parameterized by the training dataset. As
online inference environments are almost exclusively Python envi-
ronments, in Hopsworks, on-demand transformations are Python

functions - either user-defined functions (UDFs) or more commonly
Pandas UDFs. Pandas UDFs are preferred as they support vector-
ized operations and can be scaled out in Spark feature pipelines.
On-demand transformations add some latency to online inference
pipelines, and vectorized Pandas UDFs help reduce online model
prediction latency when input data is large, compared to Python
UDFs. As on-demand transformations are applied in both feature
and online inference pipelines, they need to be consistent to prevent
offline/online skew. One solution is to use versioned source-code
control or a versioned Python package containing the UDFs in
modules. Another solution is to have the online inference pipeline
download the Python package using lineage information to go from
the model to the feature to the feature pipeline module containing
the UDF(s).

3 FEATURE GROUPS
In Hopsworks, features are computed in feature pipelines and stored
together in mutable tables of related precomputed features called
feature groups, see figure 1. The choice of which features to include
in which feature group is informed by the data model and the
update cadence for the data sources used to compute the features.
A feature pipeline can update one or more feature groups.

The feature group itself is a schema, metadata, and tables in the
offline and online stores. The schema can be provided explicitly or
implicitly via a DataFrame. The feature groupmetadata contains a
user-provided name, a version, a primary key, and a flag specifying
whether it should be online-enabled or not. The primary key is
needed to retrieve rows of online feature data and prevent duplicate
data, while the version number enables support for A/B tests of
features by different models and ML system upgrades. Additionally,
the feature group metadata can also include a partition key, for
partition pruning queries to the offline store, lineage information
(parents/children of the feature group), and any embedding features
that should be indexed for similarity search. The feature group
backing tables are stored in RonDB (the online store), and the
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offline store can be either an external table in a data warehouse or
an Apache Hudi copy-on-write table, stored on HopsFS/S3.

Our online store, RonDB, is a distributed, shared-nothing, highly-
available database that supports both in-memory and on-disk data.
RonDB supports transactions using a non-blocking two-phase com-
mit (2PC) protocol that includes a third phase, a complete operation,
with transaction deadlock/failure detection timeouts of just a cou-
ple of seconds to ensure real-time failover [41]. RonDB is a fork of
MySQL Cluster (NDB), and it adds cloud-native capabilities, such
as elastic scaling, availability-zone aware replication, and cloud-
native backups. RonDB also supports asynchronous region-level
replication in either active-standby mode or active-active mode
with collision detection and avoidance support.

For online-enabled feature groups, a table is created in both
RonDB and the offline store. For offline-only feature groups, only
the Hudi table is created. For external feature groups, the table
needs to already exist in the external data warehouse before the
feature group is created. Hopsworks also includes a vector database
(OpenSearch [33]) to index embedding features. Indexed embed-
dings enable the search for similar rows in the feature group using
approximate nearest neighbor (ANN) search (faiss or nmslib) [37]. If
a feature group contains an indexed embedding, an index is created
(or re-used) in OpenSearch.

Append/upsert/delete data operations to/from a feature group
can be performed using either the batch API or stream API. The
batch API supports writing Spark DataFrames, and the stream API
supports both Spark or Pandas DataFrames as well as Flink/Beam
Datastreams. The batch API is only supported for offline feature
groups, while all writes to online-enabled feature groups are via
the stream API, which transparently writes data to both the online
and offline tables. For offline-only feature groups, data is written to
Apache Hudi, an open table format (like Apache Iceberg [22] and
Delta Lake [2]) that stores tabular data as files in low-cost object
stores, but also provides ACID updates, time-travel, primary key
indexes, clustering indexes, and data skipping indexes. Hopsworks
adds missing database management capabilities on top of Apache
Hudi, such as a query service, access control, storage management,
versioning, and background housekeeping tasks.

1 df = # Spark/Pandas DataFrame from live/historic data

2 # Perform feature engineering on 'df'

3

4 expectation_suite.add_expectation(

ExpectationConfiguration(

5 expectation_type="expect_column_values_to_be_in_set",

6 kwargs ={ "column":"fraud_label", "value_set": [0 ,1]})

7 )

8

9 fg1 = featurestore.create_feature_group("name",

10 version=1, primary_key =["id"], event_time="ts",

11 partition_key =["month"], online_enabled=True ,

12 expectation_suite=expectation_suite)

13 fg1.insert(df)

Listing 1: Upsert features to a feature group

In listing 1, we see how a feature group is created and populated
with a DataFrame. By parameterizing how data is read from the
source into the DataFrame, this minimal feature pipeline can be
run with either new data as input or with historical data by param-
eterizing it with a start time and end time for the source data in

a process known as backfilling. A feature pipeline can be run on
a schedule (batch), potentially as part of a directed acyclic graph
of jobs, or continuously (streaming). In this example, the feature
group is online_enabled, so our client writes to the stream API.
Writes to a feature group’s stream API publish the data to a topic
in Kafka with the same schema as the feature group. Hopsworks
manages the lifecycle of the Kafka topic transparently, creating and
destroying the topic along with the feature group tables, see figure 2.
Hopsworks also supports a generic schema-less Kafka topic shared
among many feature groups, which is useful for Enterprises where
the ability to create/delete Kafka topics is restricted.

Figure 2: Feature groups can be written to via a batch API
(offline only) or stream API (online and offline). For writes
via the stream API, Hopsworks guarantees eventually con-
sistent updates to both the offline and online tables

From the Kafka topic, Hopsworks ensures eventually consistent
replication of the data to both the offline and online stores, prevent-
ing skew between the data. Kafka provides at-least-once guarantees
for data written to it, and Hopsworks has a connector service that
copies the data from Kafka to RonDB (and OpenSearch), ensuring
no duplicates in the online store by performing idempotent updates
to feature values with their primary key. If there are multiple con-
current applications writing to an online feature group, it is possible
for updates to arrive out-of-order, but, in practice, online feature
groups are updated by a single client (a large Spark or Flink job is
a also single client). For writes from Kafka to the offline store, we
run a Spark job, called Hudi Delta Streamer, which ensures ACID
updates and removes duplicate rows using Hudi’s global index.
Hudi Delta Streamer jobs can be run eagerly after a client finishes
writing a DataFrame to Kafka or lazily to batch updates for better
resource utilization.

Hudi tables are stored on HopsFS-S3, which provides tiered
storage for files (small files in RonDB, recent file blocks on NVMe
disk, and all files S3), proving faster query performance for recently
accessed data. HopsFS can store small files in RonDB [32] and also
implements a global, network-aware cache for recently accessed
file blocks, stored on worker nodes in local NVMe disks. Writes to
Hudi tables are via HopsFS’ HDFS API and writes are both pushed
to both the S3-compatible object store for persistent storage and to
the local NVMe disks. HopsFS is highly available as it consists of
redundant name nodes (metadata servers), redundant data nodes,
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and all of its metadata and small files are stored in RonBD, which
is also highly available.

3.1 Extended Metadata for Feature Groups
You can design and attach schematized tags to feature groups (and
other ML assets) in Hopsworks. This enables the design of data
governance rules (e.g., data retention policy/date, personally identi-
fiable information, scope-of-use for features) that can be uniformly
applied across a feature store. All custom metadata for ML assets,
as well as name/version/description information, is indexed in
OpenSearch, enabling free-text search. You can also define data
validation rules, using Great Expectations [14], that are attached as
metadata to feature groups that are evaluated when you upsert data
to a feature group. For example, you could define as expectations the
valid range for a numerical feature or the valid set of categories for
a categorical value, and those expectations will be validated before
writing to the feature group. You define the policy for failed data
validation rules - either fail the write or allow the write to proceed,
but log a warning and/or trigger an alert by email/slack/etc.

3.2 Data Models for Feature Groups
Each feature group can have two different tables - one in the of-
fline store and one in the online store share, and those tables will
share the same data model. However, data warehouses (offline) and
row-oriented databases (online) often have different preferred data
models. Popular data models for data warehouses include one big
table (OBT), fact-dimension data models (star schema or snowflake
schema), and data vaults (with hubs, links, and satellites). OBT is
not an efficient data model for online feature groups, as the data
duplication introduced by denormalized tables is expensive for row-
oriented databases (columnar compression is not possible). For this
reason, row-oriented databases often use normalized data models
that minimize duplicate data. In general, the preferred data model
for feature groups is a normalized data model. The fact-dimension
and data vault data models fit well with feature stores, as facts/satel-
lites are typically the labels, and dimensions/hubs are the features.
The foreign keys linking labels and features are either found in the
fact/dimension tables or in the link tables for data vaults. When an
online client wants to retrieve precomputed features, it needs to
provide the foreign keys (as there is no label at prediction time).
For this reason, the snowflake schema is a good data model, as it
minimizes the number of foreign keys online clients have to pro-
vide when retrieving precomputed features - foreign keys can be
provided by dimension tables. For example, if our label is in an
order table and it has a foreign key to a product table, which in
turn has foreign keys to factory and supplier tables, the client only
needs to provide the primary key to the product table to be able to
retrieve features from all 3 dimension tables. With a star schema,
the client needs to provide 3 primary keys to all 3 dimension tables.
Feature groups also tend to be wide tables, sometimes containing
hundreds or more of features. As features can be reused across
many models, projection pushdown is important in the online store
to reduce the latency of feature lookups for online models. If projec-
tion pushdown is not available, feature groups containing features
that will be reused should not contain too many columns, as this
will increase read latency from the online store.

4 FEATURE VIEWS
Feature groups store feature data written by feature pipelines, but
when we read feature data for training/inference, we often need to
query across many feature groups. To complicate matters, feature
groups store time series data, with each row having a timestamp col-
umn that indicates when the labels or feature values were observed.
However, the feature pipelines that update the feature groups typ-
ically run at different cadences, so the timestamps of the feature
groups don’t align. This means that creating training data from
feature groups requires a temporal Join to retrieve the feature val-
ues AsOf the timestamp for the label value, thus preventing data
leakage in the training data. However, many data warehouses and
data processing engines, including Spark, do not support temporal
joins, which leads to complex, error-prone join queries built using
something like a window function and an inequality join [11, 34].

We introduced the feature view as an abstraction to solve the
following problems related to reading data from feature stores:
(1) provide a simple Python/Spark API for reading point-in-time
correct feature/label data for training and inference, (2) provide a
single model schema to prevent incompatibility between training
and inference pipelines, (3) enable reproduction of training data
using only metadata, and (4) provide declarative support for model-
dependent transformations of features. A feature view is metadata
that represents the schema for a model (input features and output
label(s)), filters applied when reading data, and any other helper
columns needed to assist in training or inference (to compute on-
demand features) or to store/process predictions.

A feature view is created when you want to create a model
with a new schema. Creating a feature view starts by selecting
its features, labels, and helper columns. These can all potentially
come from different feature groups, as long as there is a foreign key
joining the feature groups. A data model such as the fact-dimension
model enables the joining of features to a label feature group. The
data vault model or a snowflake schema additionally enables the
transitive joining of features in linked feature groups.

To address the first problem,Hopsworks provides a simple Pandas-
like domain-specific language in Python/PySpark for joining fea-
tures to create a feature view, which can later be used to read
point-in-time correct features and labels for training and inference.

1 fg1 = featurestore.get_feature_group(fg1_name , version =1)

2 fg2 = featurestore.get_feature_group(fg2_name , version =1)

3

4 # Select and join features from different feature groups

5 selection = fg1.select_all ()

6 .join(fg2.select (["f1", "f2"]), on="id")

7

8 fv = featurestore.create_feature_view(

9 "name", version=1, query=selection , label=["target"],

10 transformation_functions ={"f1": standard_scaler })

11

12 X_train , X_test , y_train , y_test = fv.train_test_split(

13 test_ratio =0.2, extra_filter=fg2.region =="US")

14

15 model = XGBClassifier ()

16 model.fit(X_train , y_train)

17 # Now register model with model registry

Listing 2: Python API for reading point-in-time correct
feature/label data for model training
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In listing 2, a feature view is created and used to create point-in-
time consistent training data, with a random split (80/20) for the
train and test sets (time-series splits are also supported). There is
an additional filter on the partition key region for feature group fg2
that prunes parquet files with records not in the ‘US’ region. The
𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 method call is transpiled by Hopsworks into a SQL
query, with help from Apache Calcite, that is then executed by our
query service, and the result is returned as a Pandas DataFrame.

For inference, a feature view can also be used to read data for
batch inference and online inference. Batch inference data is data
that arrived in a recent time window (e.g., yesterday’s data) or data
retrieved by providing a spine feature group as a parameter that
contains the IDs and timestamps for the feature values to be read.
Online inference data contains precomputed feature values used in
feature vectors for online models. Moreover, feature views allow
for reading helper columns along with training, batch inference,
or online inference data. Helper columns can be used to optimize
training (e.g., active learning), to include information about where
or how to store predictions, or historical feature values used to
compute on-demand features.

The second problem addressed by feature views is that it prevents
engineering mistakes when updating the model schema, shared
between training and online inference pipelines. As training and
online inference pipelines are different programs with different
source code, model schema inconsistencies could arise if an update
in one system was not consistently applied to the other system.
Feature views prevent schema inconsistencies, helping eliminate a
potential source of error in dynamically typed Python programs.

The third issue addressed is the reproduction of training datasets
exclusively from their metadata. Hopsworks stores metadata for
training datasets, including the splits, filter values, and other pa-
rameters, enabling their re-creation with an API call or in the UI.

Training datasets also store descriptive statistics for their fea-
tures as metadata in Hopsworks. Those statistics help solve the
fourth problem addressed by model-dependent transformations
for feature views. Model-dependent transformations (such as fea-
ture encoding/scaling) can be declaratively attached to features
in a feature view, and when a client retrieves feature data, the
transformations will be executed in the Python client as a UDF
using the training data statistics. Transformations such as encod-
ing categorical features or normalizing numerical features require
training data statistics and metadata. Reading data with a feature
view, whether in training or inference, ensures the transformations
are consistently applied using the same training dataset metadata.

4.1 Feature Reuse means Joins
Feature views capture the differences between reading training
data versus reading inference data. In training, the label feature
group is available as the labels are needed for supervised learning,
but the label feature group is not available at inference time (your
model predicts the label values). Similarly, on-demand features can
be backfilled with historical data and are available when reading
training data. However, during online inference, on-demand fea-
tures need to be computed from request-time parameters and then
merged with precomputed features read from the online store. As

such, SQL queries used to read training data are different from those
used to read inference data.

We use a AsOf Left join to read labels and features as training data
from different feature groups. Transitive Left joins in a snowflake
schema are also supported. The label feature group has a timestamp
column (event_ts). For each row in the label feature group, we join
feature values from different feature groups AsOf the event_ts in
the label feature group. The AsOf Left join can nest if a feature
group was joined to another feature group during feature selection
for the feature view. We use a Left join, because we want to include
all rows from our label feature group as training data. If a feature
value is missing for a given event_ts, we still include the row in
our training data with nulls for missing features. Later in a model-
dependent transformation, a value can be imputed for the missing
feature value, consistently between training and inference.

Figure 3 shows an example, from credit card fraud prediction,
of a nested AsOf Left join used to create training data. Notice
the cur_loc, prev_ts, and prev_loc columns are not included in the
bottom table. Those columns are used in the feature pipeline as
parameters to an on-demand feature function (a UDF) that computes
loc_diff and stores it in the fraud label feature group - loc_diff is the
location difference feature we use to help identify if two consecutive
transactions have happened unrealistically far apart in too short a
period of time.

4.2 Building Feature Vectors for Online Models
In inference, we want to predict the label using a trained model and
feature values as input. These feature values can be a combination
of precomputed features, on-demand features, and features passed
as part of the prediction request. A client retrieves precomputed
features for a model using the foreign keys from the label feature
group. For nested feature groups in a feature view, the foreign keys
are resolved as part of the query. If there are many foreign keys in
the label feature group, our client issues parallel queries, as all the
queries are independent of one another, finally merging the results.

Figure 4 shows how the feature vector is constructed from a
prediction request using a combination of precomputed features and
on-demand features. The code for figure 4 is shown in listing 3. The
example code is a credit card fraud detection system that includes
as prediction request parameters (1) the credit card number (id),
the time it was used at (event_ts), the amount of money spent
(amount) and the location (cur_loc) where the transaction took place.
The feature store client uses the id to retrieve the precomputed
features from the feature view (2) that pushes down a Left join
to data nodes in RonDB. The id column is the foreign key to the
Transactions feature group,and the bank_id is joined as part of a
nested query that also returns features from the Bank feature group.
The query retrieves both the precomputed features and helper
features (prev_ts, and prev_loc), and merges them with amount (a
feature passed as a runtime parameter). The helper features, along
with two request parameters (event_ts, and cur_loc), are passed to
an on-demand feature function that computes the loc_diff feature.
The on-demand feature, loc_diff, is joined with the 3 precomputed
features, and a feature passed as part of the prediction request,
amount, to make up the untransformed feature vector, merged, in
the client. In this example, the model is part of a scikit-learn pipeline
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Figure 3: Create training data by starting from the label feature group and joining columns from other feature groups using
(potentially nested) AsOf Left joins.

Figure 4: Online inference starts with a prediction request (1) which includes a foreign key (id), 2 helper columns and a feature.
The id is used to retrieve the precomputed features and helper columns from a feature view that spans 2 feature groups (2). The
helper columns are now used to compute an on-demand feature (3), and then (4) the feature vector is encoded and missing
values imputed (model-dependent transformations) before the model calls predict on it.

that first performs the model-dependent transformations (encoding,
imputation) before the prediction is performed on the model. The
prediction is then returned along with the untransformed features.
The prediction is sent to the client, while the prediction logs are
stored along with the prediction in the feature store.

1 def predict(id, event_ts , cur_loc , amount):

2 df = feature_view.get_feature_vector(entry=

3 {"id":id}, passed_features ={"amount":amount},

inference_helpers=True)

4 df2 = loc_diff(pd.Series ([ event_ts], pd.Series(

5 [cur_loc ]), df["prev_loc"], df["prev_ts"])

6 merged = feature_view.merge(df, {"loc_diff":df2})

7 return model.predict(merged), merged

Listing 3: Merge precomputed and passed features with an
on-demand feature for online inference

5 FEATURE QUERY SERVICES
Given our query models for feature data, we developed two query
services for the offline store - one for server-sized data and one for
big data. We also introduced a pushdown Left join optimization for
our online store, RonDB, along with our feature store client.
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5.1 ArrowFlight/DuckDB and Spark Query
Services

Hopsworks includes two query services for reading feature data and
creating training data as files from the offline store. The first query
service developed is based on Spark. This works well at large scale
when creating training data as files, although Spark’s lack of AsOf
Left joins means that we had to develop a windowed implementa-
tion of the point-in-time (temporal) join. We implemented our own
point-in-time join algorithms for Spark, including union, exploding,
and early stop sort-merge join operators [34]. However, Spark is
still an order of magnitude slower than our 2nd query service, based
on DuckDB and Arrow Flight, that enables data scientists to work
more interactively with the feature store, see figure 5.

Figure 5: Offline Feature Query Service provides fast in-
memory Pandas DataFrames via ArrowFlight, large training
dataset creation via Spark.

Our second query service is an ArrowFlight Server that uses
DuckDB to query the Parquet files in Apache Hudi tables, along
with any external tables. For this, we developed a Hudi connector
that returns the Parquet files for each feature group included in a
feature view query. DuckDB can prune Parquet files with a partition
key value, as Hudi supports Hive style partitioning, as well as push
down filters in the feature view (or training data) query using
statistics in Parquet files. DuckDB reads the (filtered) data from
the Parquet files as Arrow tables, performing the AsOf Left joins
directly on the Arrow tables, spilling to disk if needed.

Our server returns the Arrow data to the Pandas client using
the Arrow Flight Protocol (Arrow is also an over-the-wire network
format, not just an in-memory columnar data format). In contrast to
JDBC/ODBC query services for feature stores (such as AWS Athena
in Sagemaker), our service does not perform any column-to-row or
row-to-column pivoting, and using Arrow means there is also no
need to serialize/deserialize the data either from the Parquet files
to the query service or from the query service to the Pandas/Polars
clients. Pandas 2+ and Polars clients can read the arrow data directly
into memory with zero copy semantics. Hopsworks also supports
federated queries to external feature groups (tables). Our server
first identifies the data source for the external feature group, then
uses its connector to the data source (and any filters) to read the

feature data as an Arrow table that is then passed to DuckDB for
the temporal join.

5.2 Query Service for Online Features
Our online feature store is built on RonDB, a fork of NDBClus-
ter [45] designed for cloud native operation that can store tabular
data either in-memory or on-disk, see figure 6. RonDB includes a
management node, that is also an arbitrator in the event of a split-
brain network partition, data nodes, configured in replica groups
typically of size 2 or 3, and API clients - either a MySQL Server,
REST API, or native API clients (C++, Java). All nodes can be scaled
horizontally and vertically. In this paper, we focus on the MySQL
Server as a client API for the feature store, although the REST API
server is also supported. The reason for this is that the SQL API has
an additional pushdown optimization for Left joins that, as shown
later, reduces latency and improves throughput.

Figure 6: A RonDB Cluster

5.2.1 Prediction Requests and the Data Model. The typical query
workload for an online feature store is that feature store clients read
the pre-computed features from the tables that make up a feature
view using foreign keys to feature groups joined to the label feature
group. In the case of a star schema data model for your feature
view, you have N parallel primary key lookups for N joined feature
groups. In the case of a normalized data model (e.g., snowflake
schema or data vault), each foreign key can be either a primary key
lookup, or a Left join (that potentially extends to multiple tables).

5.2.2 Prediction Requests and the Feature Store Client. The feature
store client issues parallel queries for all foreign keys that arrive
in the prediction request. For each foreign key in the prediction
request, we have an independent query, whether a primary key
lookup or a Left join, and the Hopsworks feature store client issues
these queries in parallel and merges the results to build the feature
vector that is later sent to the model for prediction.

5.2.3 Pushdown Optimizations for Feature StoreWorkloads. RonDB
has several optimizations that improve its performance over key-
value stores for online feature retrieval. Firstly, it supports predicate
pushdown to read only those features needed from tables. This is
important for popular features in wide tables (containing tens or
hundreds of features), where lack of predicate pushdown means
higher latency and excessive network bandwidth usage. Secondly,
RonDB supports pushdown Left joins, which again helps reduce
latency for feature lookups from a star schema (as seen in link tables
in a data vault data model), see figure 7. Thirdly, RonDB supports
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pushdown nested Left joins, which again helps reduce latency for
feature lookups in a snowflake schema data model, see figure 8.
In both of these cases, the transaction coordinator (TC) handles
the pushdown Left joins, reading and sending foreign keys to the
participants (local data managers), that then send their results in
parallel directly back to the client.

Figure 7: Pushdown Left (outer) join in RonDB for a star
schema: the query is executed by the transaction coordinator
(TC) that first reads the foreign keys from the first table using
the primary key, and sends the reads with the foreign keys
to the local data manager (LDM) threads in parallel at the
(different) data nodes. Results are collected in parallel by the
API client.

If features are heavily reused, across many models, there is a risk
of hotspots in read access to RonDB. To overcome hotspots, RonDB
supports fully-replicated tables, where rows are replicated to all
database nodes in the cluster [43], increasing write overhead, but
mitigating read hotspots. RonDB can also increase read throughput
by increasing the number of read-only query threads on a database
node through online elastic up-scaling of nodes [42]. Finally, RonDB
can be replicated across data zones within a cloud region as well
as across regions using geographical replication. RonDB supports
Active-Active replication, with support for conflict-detection and
conflict-resolution [44].

Figure 8: Pushdown Left join in RonDB for a snowflake
schema: the query is executed by the transaction coordinator
(TC) that reads the first foreign key from the first table using
the primary key, then reads from the next table with the
foreign key using the next local data manager (LDM) thread,
that, in turn, reads the next foreign key from the next table,
until all tables in the Left join are finished. Results are col-
lected in parallel by the API client.

5.3 Similarity Search as a Query Service
Hopsworks also includes a vector database (OpenSearch kNN [37]),
where features in a feature group can be indexed as embedding fea-
tures for Approximate Nearest Neighbor (ANN) search [3]. When
you define a feature group, you can specify which features are
embeddings. It is the responsibility of the feature pipeline to use an
embedding model to encode the higher dimensional data into em-
bedding vectors. The vectors are copied to OpenSearch from Kafka
using an eventually consistent replication protocol (see figure 2).
Currently, we only index the latest feature values in OpenSearch, as
this is required by the most common use case of a vector database
- personalized recommendations using the ranking and retrieval
architecture [5, 13, 46]. Hopsworks provides a Python API to define
embedding features and query feature/label data using similarity
search for both batch inference and online inference (see listing 4).

1 from hsfs.embedding import EmbeddingIndex ,

SimilarityFunctionType

2

3 index = EmbeddingIndex("product")

4 index.add_embedding(name="emb_feature", dimension =128,

5 similarity_function_type=SimilarityFunctionType.L2)

6

7 fg = fs.create_feature_group(fg_name , version=version ,

8 primary_key =["id1"], event_time="ts",

9 online_enabled=True , embedding_index=emb_index)

10

11 # Read feature/label data similar to a given embedding

12 similar_features = fg.find_neighbors(reference_emb)

13 # Retrieve feature vectors similar to a given embedding

14 feature_vectors = fv.find_neighbors(reference_emb)

Listing 4: Python API for reading feature/label data using
similarity search and a given vector embedding

5.4 Prediction Logging and Feature Monitoring
Hopsworks supports logging predictions for both online inference
and batch inference. Prediction logs are used for (1) debugging
predictions by hand by inspecting individual feature values and
outputs, (2) monitoring for feature drift, (3) evaluating model per-
formance by comparing logged predictions with either outcomes
(if available) or some proxy metric for model performance. It is
important to log unencoded feature values and predictions, as mon-
itoring in challenging for encoded data and debugging is almost
impossible for humans with encoded feature data.

Monitoring of feature inference data allows for a faster identifi-
cation and resolution of problems in a ML system [40, 47]. Issues
can be introduced by code changes (e.g., data transformations) or
data changes (e.g., statistically significant changes in the feature
data compared to the data used to train the model). Data anomalies
are propagated to dependent ML pipelines. For instance, changes
in a feature pipeline can introduce anomalies in the produced fea-
ture values, whose statistical properties will diverge from those of
the training datasets of production models. Monitoring features
requires the computation of descriptive statistics on feature data
over time, which can be event-based (e.g., new feature data written
to the feature store) or on a schedule. Statistics can be computed
on a subset of feature data using detection and reference windows,
or on feature data being written to the feature store as part of the



SIGMOD ’24, June 09–15, 2024, Santiago, Chile Javier, et al.

same commit. Visualizing statistics as a time series can help manu-
ally identify anomalies in feature values. Moreover, by configuring
reference values to compare statistics with, and thresholds as an
estimation for abnormal values, the monitoring of feature data can
be made automatic and performed in the background.

As shown in listing 5, Hopsworks provides a simple but rich
Python API to setup the monitoring of feature values over time,
optionally defining detection and reference windows, and the com-
parison criteria to identify when there is a shift in feature data.

1 # Compute statistics on:

2 # - all features of a feature group per data ingestion

3 fg_mon = fg.create_statistics_monitoring("name").save()

4 # - on a specific feature and detection window

5 fg_mon = fg.create_feature_monitoring("name",

6 feature_name="amount", job_frequency="WEEKLY")

7 .with_detection_window(row_percentage =0.8

8 time_offset="1w") # fetch data from the last week

9 # Compare feature statistics with a reference window

10 fg_mon.with_reference_window(row_percentage =0.8

11 time_offset="2w", # fetch data from the previous week

12 window_length="1w")

13 # - or a reference value

14 fg_mon.with_reference_value(value =100)

15 # - or training dataset statistics

16 fg_mon.with_reference_training_dataset(version =1)

17 .compare_on(metric="mean", threshold =50)

Listing 5: Monitor feature data for drift

6 AVAILABILITY ZONE AND REGION-LEVEL
REPLICATION

Hopsworks can be configured to be highly available within a data
center and also between data centers (cloud regions). Hopsworks
has several internal stateful services that are replicated, including
HopsFS, RonDB, Kafka, and OpenSearch. An external Kafka cluster
can also be used, such as Confluent Kafka. Hopsworks online store
has support for local reads within an availability zone, through the
LocationDomainId variable in RonDB that identifies which avail-
ability zone a data node belongs to. RonDB clients can then provide
their own LocationDomainId to preferentially start transactions
within their own availability zone, helping reduce network traffic
costs between availability zones. This is made possible as RonDB
uses a non-blocking two-phase commit algorithm [45], so when
a client reads from the local data node, the local data node will
have a copy of the latest version of the data. In contrast, reads
in a quorum-based replication protocols, used by most key-value
stores, will always cross availability zones, assuming one replica
per availability zone.

Hopsworks Feature Store can also be made highly available in a
multi data center configuration, see figure 9. Hopsworks supports
Active/Standby high availability across regions, where writes are
performed on the Active cluster (mediated by an external arbitra-
tor service), but reads can be performed on either cluster. RonDB
asynchronously replicates online feature data and metadata be-
tween regions. Hopsworks builds on an Active-Active replicated
Kafka cluster (such as Confluent Kafka [48]) that replicates writes
across both data centers, as well as an Active-Active replicated

Figure 9: Region-level replication of Hopsworks feature store

S3-compatible storage (such as AWS S3 or Scality [19]), which repli-
cates the files in the offline store between the Active and Standby
clusters.

7 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of Hopsworks Feature
Store for both offline and online workloads. There are new bench-
marks for data and AI, such as TPCx-AI [6], that cover video, image,
and text data and model training. However, feature stores manage
primarily tabular data, so we restricted the benchmarks here to
common workloads observed in the feature store community [17].

7.1 Offline Feature Store Benchmarks
Given the lack of industry standard benchmarks for feature store
workloads, we developed a benchmark [18] around the widely
used NYC Taxi Dataset [36] to provide insights about read perfor-
mance for the different offline feature stores for Pandas clients. We
compare Hopsworks (ArrowFlight/DuckDB) with Sagemaker [4],
Databricks [8], and Vertex [20], as these 3 feature stores are publicly
available without the need to configure and attach a data warehouse,
and they also have DeWitt Clause friendly licenses [18].

We run two separate experiments with batches of data of dif-
ferent sizes (5M, 20M, and 50M rows) - first reading from a single
feature group, and then reading from 3 feature groups using a point-
in-time join. The cluster details of the offline feature stores used in
the benchmark are gathered in table 1, where all clusters ranged be-
tween 12-16 vCPUs and 48-64GB of memory. Note that Hopsworks
Feature Store used NVMe disks.

Feature Store Cluster Details
Hopsworks 1 node, 16 vCPUs, 60GB, NVMe
Databricks Driver, 3 workers (12 vCPUs, 48GB)

AWS Sagemaker Notebook with 16 vCPUs, 64GB
GCP Vertex Workbench with 16 vCPU, 60GB
Table 1: Offline Read Benchmark Cluster Setup

In figure 10(a), it is shown that, for a single feature group, Hopsworks,
when reading 50M rows, reaches 16 and 19 times the throughput of
Sagemaker and Vertex, respectively. In the case of Databricks, it was
not possible to read 20M and 50M rows in the same read operation.
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(a) Throughput for reading a Pandas DataFrame from a single Feature Group

(b) Throughput for reading a Pandas DataFrame from 3 Feature Groups using a
Point-in-time Join

Figure 10: Offline Store read throughput for Pandas clients.

When reading from 3 feature groups using a point-in-time join
(figure 10(b)), Hopsworks, when reading 10M rows, achieves 11, 10
and 17 times the throughput of Sagemaker, Vertex and Databricks,
respectively. We only reached 10m rows, as we could not get Sage-
maker, Vertex and Databricks to work at 50m rows.

7.2 Online Feature Store Benchmarks
We simulated two common experimental scenarios - lookups of
individual feature vectors, and batch lookups, common in person-
alized recommendation systems, where 150-350 candidates often
have their features retrieved in a single batch lookup from the fea-
ture store [5, 13, 46]. We ran locust [30] clients on client machines
with 32 CPUs (c5a.8xlarge and e2-highcpu-32). Hopsworks/RonDB
included 1 MySQL Server (t3.medium, 2 vCPU, 4GB) and 2 Data
Nodes (m5.4xlarge, with 16 vCPUs and 128GB). GCP Vertex and
AWS Sagemaker Online Feature Stores are managed services, where
Sagemaker uses DynamoDB and Vertex does not divulge the data-
base it uses (although, a forthcoming version has been announced
that it is built on BigTable). We only evaluated latency, so our work-
loads did not saturate the databases. We didn’t measure throughput
as Vertex and Sagemaker are managed services with low through-
put quotas. Databricks currently has no public API for their online
store.

(a) Latencies for reading single feature vectors

(b) Latencies for reading batches of 250 feature vectors

Figure 11: Latency benchmarks for the Online Store.

In figure 11, we can see that, for a single feature vector lookup,
Hopsworks, for p99 latency, has 15% of the latency of Sagemaker
and 11% of the latency of Vertex. Note that SageMaker and Vertex
have a batch size limit of 100 records per request. Therefore, for
batch size 250, we ran 3 sequential requests.

7.3 Pushdown Left Outer Joins in RonDB
In this experiment, we show the benefit of pushdown Left (outer)
joins compared to key-value lookups in RonDB. We present two
different types of Left joins - a star schema model and a nested
foreign key data model (snowflake model) to show high perfor-
mance for even deeply nested tables. In the star schema model (e.g.,
the satellite table in a data vault model), all the 10 foreign keys
are in the source table and link directly to the 10 different tables
containing the features. In the nested snowflake scenario, all the
features are retrieved from increasingly nested tables, linked from
the starting table. There are 10 tables, each with a foreign key to
another table, and you have resolve and traverse all 10 foreign keys
to read all the features in these 10 feature tables. For this nested Left
join, we show the performance for an equivalent key-value lookup
implementation, where we perform 10 sequential PK lookups, ap-
proximating the performance of a key-value store compared our
pushdown Left joins.

For the hardware used in this experiment, all the VMs are c3d
VM types in GCP. There was 1 RonDB Data Node with 4 vCPUs.
There were 2 MySQL Servers with 8 vCPUs each. There was 1 API
node running the benchmark program. The test used was Sysbench
OLTP ReadOnly [9] with all range queries set to 0. For the PK
lookups scenario, the transaction included 10 PK lookups. For the



SIGMOD ’24, June 09–15, 2024, Santiago, Chile Javier, et al.

Left join (star schema), one query was executed per transaction with
10 tables, where each table was accessed through the PK. For the
Left join (nested using foreign keys), one query was executed per
transaction with 10 tables, where each table was accessed through a
foreign key to the next table. The Left join queries are a new add-on
to the sysbench-0.4.12 that is integrated with RonDB releases.

(a) Throughput for Primary Key Read, Left Joins (Star Schema and
Nested)

(b) Latency for Primary Key Read, Left Joins (Star Schema and Nested)

Figure 12: Throughput and Latency for Primary Key Lookups
and Left Joins

In figure 12, we can see that the pushdown Left join in RonDB
results in latency and throughput improvements versus iterative
primary key lookups, for both the star schema data model and a
nested (foreign keys) data model. For latency, in the star schema
model, we see a 35-50% reduction in latency and a 20-43% reduction
for the nested data model. For throughput, in the star schemamodel,
we see a 57-102% increase in throughput and a 42-71% increase for
the nested data model.

8 RELATEDWORK
Feature stores are now widely used as a data management layer for
ML systems. Prior to Hopsworks, the first feature stores, Michelan-
gelo Palette by Uber and Zipline by Airbnb [12], were based on
a domain-specific language (DSL) for creating feature pipelines
that write features to the offline and online stores. Both these DSLs
compile into Spark jobs that compute features that are then written
to the online and offline stores. In contrast, Hopsworks introduced
the API-based feature store, as a DataFrame API for writing feature
data. A number of open-source feature stores have been developed,

including FeaSt [15], FeatureForm [16], and Feathr [29], as well as
commercial feature stores, including Tecton [50], Databricks [8],
AWS Sagemaker [4], and GCP Vertex [20]. Hopsworks is the only
feature store that builds on our data transformation taxonomy with
model-independent, model-dependent, and on-demand transforma-
tions. Other existing feature stores use key-value stores as online
stores, and, therefore, do not support pushdown projections, or
pushdown Left joins. For offline feature data, other feature stores
use existing data warehouses that provide ODBC/JDBC APIs for
retrieving feature data as Pandas DataFrames, and Hopsworks is
the only feature store to provide an offline query service that uses
AsOf Left joins (DuckDB) to implement point-in-time joins.

Temporal expressions were included in SQL:2011, including the
AsOf join operator [26]. The goal of temporal data support was to
define and associate time periods with the rows of a table, although
there is no new datatype to represent a time-period data type, with
a start/stop pair of datetime or timestamp values. In Hopsworks,
we introduced the event_ts type, rather than a time-period, as an
observation (label) is defined by a single timestamp, not a time-
period. Features could, potentially, be defined as a period data type,
but as labels can be features in one model, and vice-versa in another
model, we chose to simplify the temporal data model and support
a single event-time column. Our event-time is not the system-time
from SQL:2011, but what is called the application-time. Another
temporal data model that could be considered is Bitemporal tables
that store both a system-versioned and an application-time period
table - capturing both the periods during which facts were believed
to be true in the real world as well as the periods during which
those facts were recorded in the database. However, we believe the
extra power of this temporal data model is not warranted, given the
extra complexity it introduces. There are benchmarks that include
temporal workloads, such as TPC-BiH [24]. Feature stores are most
concerned with temporal joins, not temporal aggregations or time-
travel queries, hence we didn’t include them in our experiments.

Only a few columnar databases support AsOf joins including
DuckDB [11], Clickhouse [7], QuestDB [38], KDB [27], and Kinet-
ica [25]. The Python data processing library, Polars [35], also sup-
ports AsOf Left joins. Similar to our work on Spark point-in-time
join optimizations [34], Featr [29] have also improved temporal
joins in Spark showing a 3X improvement over baseline.

9 CONCLUSIONS
Hopsworks Feature Store is a DBMS for ML, that enables ML sys-
tems to be structured as independent feature, training, and inference
pipelines. Hopsworks introduces a taxonomy for data transforma-
tions (reusable features, model-specific features, and on-demand
features) and provides support for implementing those transfor-
mations as UDFs in the different ML pipelines. Hopsworks also
introduced a query model for reading training data (AsOf Left joins)
and online features (parallel Left joins), along with performance
optimizations for reading feature data from the offline store and
pushdown optimizations for the online store. The next steps for
Hopsworks, and the feature store community in general, are to work
further on integrating Python with Data Warehouses/Lakehouses
and to support for real-time ML systems.
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