Scaling HDF'S to more than 1 million operations per second with HopsFS

Mahmoud Ismail*, Salman Niazi*, Mikael RonstrijmT, Seif Haridi*, Jim Dowling*
*KTH - Royal Institute of Technology, t Oracle
{maism, smkniazi, haridi, jdowling} @kth.se, mikael.ronstrom@oracle.com

Abstract—HopsFS is an open-source, next generation dis-
tribution of the Apache Hadoop Distributed File System
(HDFS) that replaces the main scalability bottleneck in HDF'S,
single node in-memory metadata service, with a no-shared
state distributed system built on a NewSQL database. By
removing the metadata bottleneck in Apache HDFS, HopsFS
enables significantly larger cluster sizes, more than an order
of magnitude higher throughput, and significantly lower client
latencies for large clusters.

In this paper, we detail the techniques and optimizations
that enable HopsFS to surpass 1 million file system operations
per second - at least 16 times higher throughput than HDFS. In
particular, we discuss how we exploit recent high performance
features from NewSQL databases, such as application defined
partitioning, partition-pruned index scans, and distribution
aware transactions. Together with more traditional techniques,
such as batching and write-ahead caches, we show how
many incremental optimizations have enabled a revolution in
distributed hierarchical file system performance.

Keywords-File System Design; Distributed File System; High-
performance file systems; NewSQL

I. INTRODUCTION

During the last decade, many distributed file systems have
been developed to cope with the data deluge resulting from
huge drops in the cost of storage [1], [2]. The Hadoop
Distributed File System (HDFS) [2] is the most popular
open-source platform for storing large volumes of data, with
cluster sizes of up to 100PB being reported [3]. However,
HDFS’ design introduces two scalability bottlenecks when
processing metadata [4]. Firstly, metadata, relating to the file
system namespace and housekeeping functions, is managed
in-memory on a single server, called the Namenode. The
Namenode’s Java Virtual Machine (JVM) architecture places
practical limits on the size of the namespace (files/directories),
with maximum heap sizes of around 200GB being reported'.
Above this size, garbage collection effects can cause severe
performance degradation [5]. HDFS’ second main bottleneck
is a single global lock on the namespace that ensures the
consistency of the file system by limiting concurrent access
to the namespace to a single-writer or multiple-readers.
This limits HDFS’ usage in high throughput scenarios to
read-heavy workloads (such as 94.74% read only metadata
operations in Spotify’s workload, see figure 3).

Researchers have previously investigated the use of single-
node and distributed databases to store file system metadata,
and the conventional wisdom has been not to store the
file system’s metadata fully normalized for performance

IRecent figures from Spotify’s HDFS cluster

reasons [6], [7]. The drawback of denormalized metadata,
however, is that some file system operations require vastly
increased processing time to handle all the duplicate data.
For example, file system read and write operations can be
optimized at the cost of impractically slow subtree operations,
such as, renaming a directory containing millions of files.

However, recent advances in shared-nothing, transactional,
in-memory NewSQL [8] databases, as well as huge drops
in the cost of main memory, have changed the trade-offs
needed to build a distributed metadata service for hierarchical
distributed file systems. Large databases with tens of terabytes
of in-memory capacity that can handle millions of operations
per second are now available as open-source platforms [9].

HopsFS [10] is a new distribution of HDFS that decouples
the file system metadata storage and management services, ex-
ploiting the capacity and performance properties of NewSQL
databases. HopsFS stores the file system metadata fully
normalized in a scale-out, in-memory, distributed, relational
database called Network Database (NDB), a NewSQL storage
engine for MySQL Cluster [9]. HopsFS supports up to at
least 24 TB of metadata (37 times HDFS’ metadata capacity)
and at least 16 times the throughput of HDFS.

HopsFS has been running in production since April 2016,
providing Hadoop-as-a-Service for researchers at the SICS
ICE data center in Luled, Sweden.

This paper extends our previous work in [10] to present
more detail on the techniques we used in the design of
HopsFS, including the main features and configuration
parameters we used in NDB to scale HopsFS. As well as
leveraging classical database techniques such as batching,
and write-ahead caches within transactions, and exploiting
the scalability properties of distribution aware techniques
found in NewSQL database, such as application defined
partitioning(ADP), distribution aware transactions(DAT), and
partition-pruned index scans (PPIS).

II. BACKGROUND
A. Hadoop Distributed File System (HDFS)

HDFS [2] is an open-source implementation of the Google
File System (GFS) [1]. HDFS splits files into blocks
(default 128 MB in size), and the blocks are replicated
across multiple Datanodes for high availability (default of
3 replicas). A HDFS cluster consists of a single Active
Namenode (ANN), which is responsible for managing the
file system namespace, and serving file system requests
sent by the clients, as well as many Datanodes (up to 5-
10K) that store and manage the file blocks, see figure 1.

— = — | B
| :
oD
Journal Nodes ZooKeeper Nodes | NDB =
T
% —< | k> g
HDES | | HopsFs/ E ﬁ g

HDFS

Clients i > | Clients > =

ANN SbNN | NNs Leader B

Y 4. 2 AN AL
v v | v v 2
P S WY W N F_ B W W N =
e e O Do oo M
e e P
Datanodes | Datanodes Z
HDFS HopsFS

Figure 1: Architecture diagram for HDFS and HopsFS. HopsFS provides
highly available stateless Namenodes, with one leader Namenode for house-
keeping activities, using NDB cluster. On the other hand, HDFS requires an
Active Namenode (ANN), at least 1 Standby Namenode (SbNN), at least 3
Journal nodes, and at least 3 Zookeeper nodes to enable a highly available
setup.

The Namenode design suffers from metadata scalability
bottlenecks. For instance, the HDFS metadata is stored on
the JVM heap of the Namenode which limits the scalability
of the namespace [4]. Moreover, the Namenode uses a global
lock on the entire file system metadata to execute the file
system operations atomically on the namespace, limiting
the Namenode semantics to single-writer, multiple-reader
concurrency semantics. To ensure high availability of the
metadata, the Namenode logs the changes to the metadata
into journal servers using quorum-based replication. The logs
are later read and reapplied asynchronously by the Standby
Namenode (SbNN). ZooKeeper [11] is used to coordinate
failover from the active Namenode to the standby Namenode,
as well as providing agreement on which Namenode is the
active and which is standby.

B. HopsFS

HopsFS [10] is an open-source, drop-in replacement
for HDFS. HopsFS overcomes the shortcomings of HDFS
by replacing the Active and Standby Namenodes with a
distributed metadata service built on a NewSQL database,
see figure 1. HopsFS’ supports a scalable number of stateless
Namenodes that still serve file system requests sent by the
clients, but instead of processing the metadata locally in-
memory, they process the metadata stored in the database.
Each Namenode has a Data Access Layer (DAL) driver that
encapsulates all database operations, allowing HopsFS to use
a variety of NewSQL databases, even with different licensing
models. Currently, only MySQL Cluster is supported. HopsFS
Namenodes can serve requests from both HDFS and HopsFS
clients, but HopsFS clients also provide load balancing
between the Namenodes using random, round-robin, and
sticky policies. HopsFS’ Namenodes uses the database as
a shared memory to elect one of the Namenodes as a
leader [12]. The leader Namenode is responsible for house-
keeping activities, such as replication of under-replicated-
blocks and handling failures of the Datanodes.

C. Network Database (NDB)

MySQL Cluster [9] is a shared-nothing, in-memory, highly-
available, distributed, relational NewSQL database. Network

Database (NDB) is the storage engine of MySQL Cluster.
MySQL Cluster consists of at least one management node
for monitoring and configuring the cluster, and multiple
NDB datanodes for storing the tables’ data and handling
transactions to access/process the stored data.

NDB datanodes, not to be confused with HDFS/HopsFS
datanodes, are organized into node groups, where the number
of NDB datanodes in a group is determined by the replication
factor of the cluster. NDB stores its data in tables in row-
oriented format, sharding the rows in a table over NDB
datanodes using the hash value of the table’s partition key,
which is by default the primary key. Each partition (shard)
is replicated and stored by a node group, that is, all the
NDB datanodes in a node group contain a complete copy
of all the shards assigned to the node group. NDB provides
a transaction coordinator (TC) at every NDB datanode and
they run in parallel, supporting concurrent cross-partition
transactions. New NDB datanodes and node groups can
be added to a running cluster without affecting ongoing
operation, with the rebalancing of data among node groups
handled transparently by MySQL cluster. Moreover, NDB
supports the following features:

Application Defined Partitioning (ADP): This enables
developers to override the default NDB partitioning scheme,
for fine grained control over how the tables’ data is distributed
across the NDB datanodes.

Distribution Aware Transactions (DAT): The latency
of database operations can be reduced by specifying a
transaction hint, based on the application defined partitioning
scheme, to start the transaction on the NDB datanode
containing the data to be read/updated by the transaction.
Incorrect transaction hints may incur additional network
traffic (as a Transaction Coordinator (TC) may route the
requests to a different NDB datanode holding the data), but
otherwise correct system operation.

D. Different Types of NDB Read Operations

NDB supports different types of operations to read the data
from the database. Each of these operations has a different
cost as shown in figure 2. A description of these operations
is as follows:

Primary Key (PK) Operation: PK operations
read/write/update a single row stored in a database shard,
and NDB is designed to support high throughput and low
latency PK operations.

Batched Primary Key (B) Operations: Batching PK
operations can enable higher throughput at the cost of
increased latency by making more efficient use of network
bandwidth.

Partition-Pruned Index Scan (PPIS): A PPIS is
an index scan operation that is local to a single database
shard, making it scalable (NDB clusters can have hundreds
of database shards). A PPIS is a distribution aware

operation that exploits the application defined partitioning
and distribution aware transactions features of NDB.

Index Scan (IS): An index scan operation causes an
index scan operation to be executed on all the database shards,
causing it to become increasingly slow for increasingly larger
clusters.

Full Table Scan (FTS): Similar to index scan op-
erations, FTS operations are not distribution aware. FTS
operations also do not use any index, thus, reading all the
rows of a table stored on all the database shards. In distributed
databases, FTS operations should be avoided due to their
high cost.

Distribution Aware
Operations

FTS| o —

IS
PPIS B [pg
PK

Operation frequency in HopsFS
Figure 2: Cost of different NDB read operations. FTS is the least efficient
operation, while PK is the most efficient operation. PK, B, and PPIS are
scalable operations, as they exploit the distribution aware transactions feature
of NDB.

Operation Cost

III. HopSFS KEY DESIGN DECISIONS

In this section, we describe the key decisions taken for
HopsFS. We reimplemented most of the file system operations
such that these operations only use scalable database access
operations such as primary key (PK), batched primary key
(B), and partition-pruned index scan (PPIS). We tried to
avoid index scans (1S) and full table scans (FTS) as much
as possible since these operations are not as scalable.

B mkdir (0.02%)
I chmod (0.03%)
3 set replication (0.14%)
3 chown (0.32%)

E delete (0.75%)

3 rename (1.3%)

3 create file (2.7%)

. s (9.01%)
E stat (17%)
I read file (68.73%)

Figure 3: Frequency of file system operations for Spotify’s HDFS cluster.
A. Partitioning Scheme

In HDFS, a file/directory is identified as an inode. An
inode has zero or more blocks, where each block is replicated
into multiple replicas (usually three). To keep track of the
files’ blocks and replicas status, multiple queues are used
such as under-replicated-blocks, excess-replicas, invalidated-
blocks, etc. HopsFS translates all the aforementioned queues
into tables in the database. For example, a file/directory is
identified as a row in inodes table, while each of its blocks
is a row in blocks table.

We base our choice of the partitioning scheme on the
relative frequency of file system operations reported by
production deployments, where = 95% of the operations
comprise of read, list, and stat operations, see figure 3. We
choose the inode’s parent ID as the partition key for the
inodes table that enables fast list operation for directories as
all the immediate descendants of a directory are stored on
the same database shard. Similarly, we shard the blocks and
replicas tables using inode’s ID which enables fast file read
operations as all the blocks and replicas information for a
file is stored on the same database shard.

Hierarchical namespaces are inherently imbalanced, as
all full file paths include one of a small number of top-
level directories. The root directory participates in all file
system operations, that is, all file path resolution operations
start at the root. HopsFS caches the root inode (/) to solve
this problem, also see section III-D2. In HopsFS, all path
resolution operations start at the second path component,
.e.g., /home. As mentioned above we use the inode’s parent
ID as the partition key for the inodes table. This causes all
immediate children of the root directory to be stored on the
same database shard. This particular database shard becomes
a bottleneck during path resolution operations as all the
path resolution operations start at this shard. HopsFS uses an
adaptive pseudo-random partitioning mechanism to uniformly
distribute the top level directories among the database shards.

B. Fine Grained Locking

HopsFS uses hierarchical locking for inode operations.
That is, taking a lock on an inode implicitly locks all its
associated metadata. We implemented hierarchical locking
using row-level locking that is provided by the NDB. To
maintain the global order, HopsFS ensures that all operations
start on the inodes table. We also implement a novel subtree
locking mechanism to handle operations on large directo-
ries containing potentially millions of files. Unlike HDFS
which provides single-writer, multiple-reader concurrency
semantics, HopsFS provides multiple-writer, multiple-reader
concurrency semantics.

C. Optimizing File System operations

All the file system operations start by resolving the file path.
Therefore, we choose the primary key of the inodes table to
be a combination of the inode’s parent ID and inode’s name.
This ensures that the path resolution is done using primary key
(PK) operations. Our partitioning scheme, as described earlier,
enables reading the blocks and replicas of a file, as well
as listing directories using efficient partition-pruned index
scan (PPIS) operations. Each file system operation translates
into one or more database transactions. In table I, we show
the corresponding database operations for the common file
system operations.

‘Without Inode Hint Cache at the

FS Ops

Inode Hint Cache Hits

mkdirs(d py) (N —3)PKye +2PKqy 2PKy + BN _3
addBIk(f ny) (N —2)PKye + PKy + PKy 4+ By + (fs =07 PPIS : 6PPIS) PKy + PKy + (2B)Ny_1 + (fs =07 PPIS : 6PPIS)
by by
create(f n7) (2N — 5)PKpe + 5PKy + (fs =07 PPIS : 8PPIS) + Z addBIK(f) 5PKy + (2B)an—_5 + (fs =072 PPIS : 8PPIS) + Z addBIK(f n7)
b=bg b=bg
read(f pr) (N —2)PKye + PKy + (fs =070:5PPIS) PKy +Bn_2+ (fs =070:5PPIS)
Is(é) (N —2)PKype + PKy + (iisadir ? PPIS : 0) PKyp + Bn_go + (iisadir? PPIS : 0)
chmod(i py) (2N — 4)PKyc + 2PKy + (iisadir ? IS : PPIS) 2PKqy + (2B)gN_4 + (iisadir ? IS : PPIS)
stat(i) (N —2)PKype + PKp PKy+ Byn_o
del(f) (2N — 4)PKyc 4+ 2PKqy + (fs =070 : 8PPIS) 2PKy + (2B)agN_4 + (fs =020 : 8PPIS)
mv(fn.far) (M +2N —S —T)PKpe+ (fs =070: 9PPIS)+(S=M—1& M = N?3PKy : (3B)ap4oN—5—7+ (fs =070:9PPIS) +(S=M - 1& M =
AP Kq) N ?3PKqy, : APKq)
fNANIN ¢ f=file, d=dir, i=file/dir path at depth N fs ¢ size of a file f
PKqy,PKype @ aprimary key read operation with a write or a read-committed lock (i.e., no lock) PPIS : a partition-pruned index scan
B ¢ x primary key batch operations that Tread in total N rows from the database IS : Index scan (hits all shards)
S number of shared inodes in the paths between (f py and fpr)

Table I: The cost of file system (metadata) operations in terms of database accesses for (1) no inode hint caching and (2) cache hits.

D. Caching

1) Per-Transaction Cache: HopsFS implements a pes-
simistic concurrency control model, where we use row-level
locking to serialize conflicting operations. We encapsulate
the operations in a transaction [10]. Inside the transaction,
usually the rows are read and updated multiple times. So
to avoid many round trips to the database, we implement
a per-transaction cache (snapshot) which sends the updated
rows to the database as a single batch at the end of the
transaction.

2) Root Inode Cache: The root inode is shared among all
valid file system paths. Therefore, it is read by all the file
system operations. As a result, the database shard responsible
for the root inode becomes a bottleneck. The root inode is
immutable, so to alleviate the load on the database shard
that stores the root inode, we cache the root inode on all the
Namenodes.

3) Inode Hints Cache: Resolving a path is the first step
in every file system operation. Assuming a path of length
N, resolving the path will take N network round trips to the
database. This suggests that our performance will degrade
as the path length increases. As a solution, each Namenode
caches only the primary keys of the inodes. Given a path
and a cache hit on all the path components, we can read
all the path inodes from the database using a single batched
primary key operation (B). The cost reduction provided by
the inode hints cache is detailed in table 1.

IV. CONFIGURING HOPSFS AND NDB

This section introduces the most important configuration
parameters for tuning the performance of HopsFS and NDB
together.

A. Optimizing NDB cluster setup

HopsFS performance is directly affected by how the
NDB cluster is setup. Each NDB datanode runs a multi-
threaded application called “ndbmtd”, which is responsible
for handling all the tables’ data assigned to that NDB
datanode, as well as transaction handling, node recovery,
check-pointing to disk, and online backup. Table II describes
the key NDB datanode threads and the recommended number
of threads to enable a high performance HopsFS setup.

[Task [Count [Responsibility |

LDM 12 Local Data Manager threads handle the data in one or more
shards on the NDB datanode. For best performance one LDM
thread per database shard is recommended.

TC 4 Transaction Coordinator threads handle ongoing transactions
on the NDB datanode. TC to LDM ratio is determined by the
type of the workload, for example, for read-heavy workloads
a 1 to 4 ratio is used, while for update-heavy a 1 to 1 ratio
should be used.

MAIN| 1 The main thread handles schema management, and it can also
act as a transaction coordinator, if needed.

RECV| 2 Receive threads handle inbound network traffic.

SEND | 1 Send threads handle outbound network traffic.

REP 1 Handles asynchronous replication operations to other database
clusters.

10 1 Handles I/0 operations on the underlying file system on the
NDB datanode.

Table II: Important NDB configuration parameters.

In our NDB setup each LDM thread handled exactly one
database shard. In the large scale experiments, involving 12
NDB datanodes, this resulted in 12 * 12 = 144 shards.

B. Thread locking and Interrupt Handling

Together HopsFS and NDB generate millions of network
interrupts every second. Good interrupt handling is imperative
for high performance of NDB and HopsFS. Usually the Linux
operating system distributes network interrupts among the
CPUs. However, sharing CPUs among interrupt handlers and
user processes can affect the performance of both the interrupt
handlers and the user processes due to CPU instruction
cache misses. Moreover, binding a process to a CPU reduces
instruction cache misses and improves the performance. We
configured each NDB datanodes to run with a total of 22
threads. All NDB datanodes threads were bound to their own
CPU. In our experiments, the remaining CPUs and the CPUs
assigned to MAIN and REP threads were used to handle
the hardware and software interrupts. HopsFS Namenodes
were configured to run 200 client request handler threads
and a dedicated thread for communication with the NDB
cluster. The Namenode thread responsible for communication
with the NDB was bound to a dedicated CPU, while the
other threads shared the remaining CPUs [13], [14]. For
high performance, we recommend at least 10 GbE with
sub millisecond ping latency between the NDB datanodes
and the Namenodes. Additionally, increasing the network
maximum transmission unit (MTU) size to 9000 (jumbo
frames) also increases both the network throughput and
HopsFS throughput.

1.4M : | : . T . .
HopsFS using 12 Node NDB cluster —+—
HopsFS using 8 Node NDB cluster ——
1.2M HopsFS using 4 Node NDB cluster
HopsFS using 2 Node NDB cluster
M k- HDFS Spotify Workload

800K

ops/sec

600K -

400K / |

200K / |

I I I I I I I I I I I
1 5 10 15 20 25 30 35 40 45 50 55 60

Number of Namenodes

Figure 4: HopsFS and HDFS throughput for Spotify workload.

V. SCALABILITY EVALUATION

We ran all the experiments on premise using Dell Pow-
erEdge R730xd servers (Intel(R) Xeon(R) CPU ES5-2620
v3 @ 2.40GHz, 256 GB RAM, 4 TB 7200 RPM HDDs)
connected using a single 10 GbE network adapter. Unless
stated otherwise, NDB, version 7.5.3, was deployed on 12
nodes configured to run using 22 threads each and the data
replication degree was 2. We extended the QFS [15] bench-
mark utility? to test the metadata scalability of HopsFS [10].

A. Throughput Scalability

We used workload traces from Spotify that operates a
Hadoop cluster containing 1600+ nodes and storing 60 PB
of data. As shown in figure 4, we compared the performance
of HopsFS with HDFS. Also, we varied the setup of the
NDB cluster from 2 to 12 nodes, to show the effect of
scaling out the NDB cluster on HopsFS. Using a 2-node NDB
cluster, HopsFS scales linearly up to 10 Namenodes, then
it reaches a plateau since the database becomes overloaded.
Similarly, 4-node and 8-node NDB clusters help HopsFS
to scale linearly up to 25 and 45 Namenodes respectively.
HopsFS can perform 1.25 million operations per second
that is 16 times the throughput of HDFS using Spotify’s
workload, as shown in figure 4.

As shown in figure 3, 2.7% of the operations in the
Spotify’s workload are file create operations. We derived a
write-heavy synthetic workload by increasing the frequency
of file create operations to 20% and decreasing the frequency
of the file read operations accordingly. Then, we ran both
HopsFS and HDFS on that synthetic workload. HopsFS
outperforms HDFS throughput by 37 times, due to the use
of fine grained locking compared to the global single lock
used in HDFS.

B. Metadata Scalability

Assuming a file with two blocks that are triple replicated,
and with a file name of 10 characters long, a file would require
458 bytes to store its metadata in memory in HDFS. While, in
HopsFS, the same file would require 1552 bytes, however, the
metadata is replicated twice. Thus, by considering the high

Zhttps://github.com/smkniazi/hammer-bench

availability of HDFS, where active and standby Namenodes
participate, and the twice replication of NDB, HopsFS
requires ~ 1.5 times more memory than HDFS.

As shown in figure 5, HDFS scales up to 460 million files
with a JVM heap size of 200 GB, while HopsFS can scale
up to 17 billion files using 48-node NDB cluster with 512
GB of RAM on each NDB datanode. HopsFS can store 37
times more metadata than HDFS.

32768
8192 [HDFS —e—

éﬁ 2048 [HopsFS ——

5 & 512 |

o= 128

2E 32 F

E= 8

z 2 ¢]
7 7, S 7y < S In O I O e
G % %. D%, B, % o % T

> S Qe B O %

Memory
Figure 5: HopsFS and HDFS Metadata Scalability plotted in Log Scale.

C. Effect of the Database Optimization Techniques

In this experiment, we focus on three optimizations; (1)
distribution aware transactions (DAT), (2) application defined
partitioning (ADP), and (3) the inode hint cache at the
Namenodes. We ran file creation and file read experiments
on a 30 Namenode HopsFS cluster while varying the file
depth, as shown in figures 6a and 6b.

File system operations in HopsFS are implemented as
one or more transactions, where each transaction performs
multiple round trips to the database to read and update the
metadata. In Table I, we show the number of round trips
needed for each operation in the case of (1) no inode hint
cache and (2) inode hint cache hits. For example, if we create
an empty file /d1/d2/.../d9/f at depth N = 10, then in the case
of no caching, we substitute in the equation from Table I and
derive the cost of the operation as 15PK,..+5PK,,+PPIS,
that is 15 primary key reads with read-committed lock, 5
primary key reads with write lock, and 1 partition-pruned
index scan (PPIS). In contrast, in the case of cache hits
for all inodes hints, we derive the cost of the operation as
5PK,,+ PPIS+2(B);5 irrespective of the depth of the file
in the namespace hierarchy. Cache hits save 15 primary key
(PK) round trips to the database and instead uses 2 batched
primary key operations (B) to fetch the desired rows.

We ran experiments for both cases, that is, with the cache
enabled (HopsFS) and with the cache disabled (HopsFS-
Cache), as shown in figure 6b. Our experiments show that
at depth N = 10 the inode hint cache improves HopsFS’
throughput for file creation by ~ 11%. Similarly, in the case
of file read, the cache improves HopsFS by ~ 26%, see figure
6a. Moreover, in figure 6b, the difference between different
optimizations is not apparent while increasing the depth of the
file, since we also have a PPIS in the equation for file create
which adds a higher cost than PK, and B operations. On the
other hand, in figure 6a, the difference is still apparent since
a file read consists of only PK operations (that scale linearly).
Fortunately, average file depths in production workloads are

HopsFS ——
HopsFS-(DAT,ADP) —»—
HopsFS-Cache —=—
HopsFS-(DAT,ADP,Cache) —a—
600k T

550k
500k
450k
400k
350k
300k
250k
200k
150k

100k
5

Ops/Sec

10 20 30

(a) reading empty files
160k T

140k
120k
100k
80k
60k
40k
20k

Ops/Sec

5 10 20 30
File Depth
(b) creating empty files

Figure 6: Effect of different optimizations on file create and file read
operations with respect to depth of the file in the namespace hierarchy. We
ran HopsFS with 30 Namenodes.
not that high - Spotify’s workload reported an average file
depth of 7.

VI. LOAD ON THE DATABASE

NDB provides a set of counters to display how the cluster
is loaded with different operations. These counters include
primary key reads, scans per partition, and update counters.
We ran Spotify Workload on HopsFS with 30 namenodes
twice; first with HopsFS running with all optimizations (DAT,
ADP, Cache), and the second run with no optimizations at all.
After each run, we collected the counters from the database as
shown in figure 7. In the unoptimized version, see figure 7b,
we see higher numbers of scans compared to the optimized
version, see figure 7a. HopsFS’ throughput drops by only
5%, since the Spotify’s workload is read heavy, see figure 3,
which translates into mainly primary key operations on the
database. However, the unoptimized version incurs =~ 4.5
times more operations than the optimized version due to the
increased number of scans in the unoptimized version.

146.83 Million Operations 669.77 Million Operations

W PK Reads (81.57%) W PK Reads (16.67%)
Scans (3.18%) -)
Updates (15.25%)

cans (80.
B Updates (2.70%)

(a) Optimized (b) Unoptimized

Figure 7: Load on the NDB cluster while running Spotify Workload on
HopsFS with 30 Namenodes.

VII. CONCLUSIONS

In this paper, we presented HopsFS, a more scalable
version of HDFS with a distributed metadata layer. We

detailed the different techniques we used to optimize the
performance of HopsFS, and their relative performance gain,
including well-known techniques such as batching, a hint
cache, and a write-ahead cache, as well as less well-known
NewSQL features such as application defined partitioning,
distribution aware transactions, and partition-pruned index
scans. The cumulative effect of our optimizations is a
distributed file system that surpasses 1 million file system
operations per second on Spotify’s Hadoop workload. That
is, HopsFS supports at least 16 times higher throughput than
HDFS, and scales to significantly larger clusters, storing at
least 37 times more metadata.

VIII. ACKNOWLEDGEMENTS

This work is funded by Swedish Foundation for Strategic
Research project “E2E-Clouds”, and by EU FP7 project
“Scalable, Secure Storage and Analysis of Biobank Data”
under Grant Agreement no. 317871.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 2943, Oct. 2003.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies,
2010, May 2010, pp. 1-10.

[3] I Polato, R. Ré, A. Goldman, and F. Kon, “A comprehensive view of
hadoop research — a systematic literature review,” Journal of Network
and Computer Applications, vol. 46, pp. 1-25, 2014.

[4] K. V. Shvachko, “HDFS Scalability: The Limits to Growth,” login:
The Magazine of USENIX, vol. 35, no. 2, pp. 6-16, Apr. 2010.

[5] “Hadoop JIRA: Add thread which detects JVM pauses.” https:
/lissues.apache.org/jira/browse/HADOOP-9618, [Online; accessed 1-
January-2016].

[6] M. Seltzer and N. Murphy, “Hierarchical File Systems Are Dead,”
in Proceedings of the 12th Conference on Hot Topics in Operating
Systems, ser. HotOS’09. Berkeley, CA, USA: USENIX Association,
2009, pp. 1-1.

[7]1 E. Levy and A. Silberschatz, “Distributed file systems: Concepts and
examples,” ACM Computing Surveys, vol. 22, pp. 321-374, 1990.

[8] F. Ozcan, N. Tatbul, D. J. Abadi, M. Kornacker, C. Mohan, K. Ra-
masamy, and J. Wiener, “Are We Experiencing a Big Data Bubble?”
in Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, 2014, pp. 1407-1408.

[9] “MySQL Cluster CGE,” http://www.mysql.com/products/cluster/, [On-
line; accessed 30-June-2015].

[10] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, and
M. Ronstrom, “HopsFS: Scaling Hierarchical File System Metadata
Using NewSQL Databases,” in 15th USENIX Conference on File
and Storage Technologies (FAST 17). Santa Clara, CA: USENIX
Association, 2017, pp. 89-104.

[11] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-
free Coordination for Internet-scale Systems.” in USENIX Annual
Technical Conference, vol. 8, 2010, p. 9.

[12] S. Niazi, M. Ismail, G. Berthou, and J. Dowling, “Leader Election
using NewSQL Systems,” in Proc. of DAIS. Springer, 2015, pp. 158
-172.

[13] “Interrupt and process binding,” https://access.redhat.com/
documentation/en-US/Red_Hat_Enterprise_Linux_for_Real _
Time/7/htm1/Tuning_Guide/Interrupt_and_process_binding.html,
[Online; accessed 1-January-2017].

[14] “Linux: scaling softirq among many CPU cores ,” http://natsys-
lab.blogspot.se/2012/09/linux-scaling-softirq-among-many-cpu.html,
[Online; accessed 1-January-2017].

[15] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The Quantcast File System,” Proc. VLDB Endow., vol. 6, no. 11, pp.
1092-1101, Aug. 2013.

