Towards Distribution Transparency for Supervised ML With
Oblivious Training Functions

Moritz Meister”
Logical Clocks AB
Stockholm, Sweden

Alexandru A. Ormenisan
KTH Royal Institute of Technology
Logical Clocks AB
Stockholm, Sweden

ABSTRACT

Building and productionizing Machine Learning (ML) models is a
process of interdependent steps of iterative code updates, includ-
ing exploratory model design, hyperparameter tuning, ablation
experiments, and model training. Industrial-strength ML involves
doing this at scale, using many compute resources, and this requires
rewriting the training code to account for distribution. The result
is that moving from a single host program to a cluster hinders iter-
ative development of the software, as iterative development would
require multiple versions of the software to be maintained and kept
consistent. In this paper, we introduce the distribution oblivious
training function as an abstraction for ML development in Python,
whereby developers can reuse the same training function when
running a notebook on a laptop or performing scale-out hyper-
parameter search and distributed training on clusters. Programs
written in our framework look like industry-standard ML programs
as we factor out dependencies using best-practice programming
idioms (such as functions to generate models and data batches). We
believe that our approach takes a step towards unifying single-host
and distributed ML development.

1 INTRODUCTION

Machine learning (ML) is a complex subject, and the process of
learning to program (train) ML applications usually involves start-
ing with the simplest possible program, avoiding complexities such
as feature engineering and scalability (distributed programming),
and slowly adding complexity over time. In particular, moving
from single-host applications to distributed applications is chal-
lenging, especially for supervised ML as it requires rewriting entire
applications. This keeps many developers, who are used to single
host debugging and testing and have limited knowledge about dis-
tributed environments, from discovering the benefits of distributed
ML.: faster hyperparameter sweeps and reduced training times.
The contribution of this paper is the design and implementa-
tion a framework that unifies single-host and distributed training
functions based on an abstraction we call the distribution oblivious
training function. We make training functions reusable by following
the dependency inversion principle [6] to factor out those aspects
of training functions that are subject to change between single-host
and distributed applications. We demonstrate our framework for

“Correspondence to: M. Meister <moritz@logicalclocks.com>.

Sina Sheikholeslami
KTH Royal Institute of Technology
Stockholm, Sweden

Robin Andersson
Logical Clocks AB
Stockholm, Sweden

Jim Dowling
KTH Royal Institute of Technology
Logical Clocks AB
Stockholm, Sweden

Keras/TensorFlow (TF) programs, but the approach generalizes to
other frameworks that support distribution, such as PyTorch.

2 DISTRIBUTION TRANSPARENCY IN ML

Outer Search Loop.

(— search ) Inner Learning Loop
Algorithm or Trial | gef train(model_gen, hparams, ...):
{Human Expert JConfiguration| " \yish distr_strategy():
model = model_gen(hparams)
model.compile(hparams)
data = data_gen(hparams)
result_dict = model.fit(data)
return result_dict

{ Metric

Figure 1: Inner and outer loops for the training function

Transparency in distributed systems [8] refers to hiding distribution-

specific aspects of an application from the developer - for example,
a developer invoking a function may not know (or need to know) if
the function she is calling is local to her application or on a remote
server. Distribution transparency enables developers to write code
that is reusable between single-host and distributed instantiations
of a program.

In supervised ML, the core logic that is common across all pro-
grams is the training function - a series of steps including defining
a model architecture, then ingesting labelled training data and
feeding it to the model and iterating until some termination (or
convergence) criteria are met. The output of the training function
is a model that can be used to make predictions on new data, drawn
from the same distribution as the training data.

Training functions, however, can be used in many different con-
texts when we distribute supervised ML programs: single host note-
books, distributed hyperparamter search, parallel ablation studies,
and distributed training are common examples. However, existing
frameworks for supervised ML, such as Keras/TensorFlow and Py-
Torch, require training functions to be rewritten to account for
the distribution strategy, what accelerators the computations are
scheduled on, and whether the optimizer needs to share its results
with other hosts (for distributed training). In figure 1, we illustrate
how training functions can be used - as part of (1) the inner loop
when the same training function is either run on a single host or on
many hosts in parallel (as part of data-parallel distributed training)
using (distributed) stochastic gradient descent, or (2) the outer loop
when the training function is run on different hosts for example



MLSys ’20, March 02-04, 2020, Austin, TX, USA

Table 1: Distributed aspects of the training function that
need to be re-written for different distributed contexts

Process Step Distributed aspects of the Training

Function

HParam Search Model Architecture, Hyperparame-

ters, Early Stopping, Optimizer, Regu-

larization

Model Architecture, Features (Input

Data), Regularization, Optimizer

Distributed Training Features (Input Data), Optimizer,
Accelerator-awareness

Ablation Study

with different hyperparameters for each host, and a global opti-
mizer that collects the results of hyperparameter trials to decide on
subsequent trials, searching for better hyperparameters.

Table 1 lists the aspects of training functions in Keras/TensorFlow
that need to be rewritten for a distribution context, compared to the
single-host Python program. For the inner loop, the hyperparame-
ters and model architecture can vary, and code needs to be rewritten
to account for how many hardware accelerators are being used. For
the outer loop, the variable aspects related to model configuration
are controlled by a global optimizer, such as a Bayesian optimizer
proposing different configurations (trials), or an ablator, generating
trials by leaving one or more components out at a time. The trials
can be run in parallel on a cluster and the results collected by a
global optimizer or ablator.

3 DISTRIBUTION OBLIVIOUS TRAINING
FUNCTION

def train(model_gen, hparams, ...):
with distr_strategy():
model = model_gen(hparams)
model.compile(hparams)
data = data_gen(hparams)
result_dict = model.fit(data)
return result_dict

Explore, Design —P{ Search/Tuning }——){ Explainability/Ablation H Distributed Training ‘
Single Host Python -
A

A e—
Iterative Development

Development Step

Trial: Archi(ec(uré. ‘ l Trial: Leave-One- ‘ l
B HParams Component-Out ‘ Workern
A A PySpark Cluster A
Y

Feature Store | Mp}jel Reposi{qry

Figure 2: ML model development process

In figure 2, we can see how developers structure their applica-
tions to write distribution oblivious training functions and include
them in the different distribution contexts. Firstly, developers write
the common training function, and as is now considered good ML
engineering practice, developers also write separate functions for
model architecture generation and data batch reading. The training
function becomes a parameterizable higher order function with
generator functions and hyperparameter configurations as input.
For hyperparameter search, a search space needs to be defined from
which a global optimizer (can be user-defined) draws the hyperpa-
rameters from, but for other cases, the hyperparameters are fixed.
For example, the final distributed training step should make use of
the best configuration found in the previous search experiments.

Meister, Sheikholeslami, et al.

The distribution context and environment can be initialized out-
side the training function (it is oblivious to it) to make appropriate
use of the resources such as accelerators. Other means to achieve
transparency of the two loops include the use of pluggable hooks,
such as the Keras/TF callbacks.

4 UNIFIED EXECUTION FRAMEWORK WITH
JUPYTER NOTEBOOKS ON HOPSWORKS

With Hopsworks [4] and the Maggy framework [1][7], we provide
a unified development and execution framework for distribution
transparent Jupyter notebooks [5]. That is, the developer writes
a Jupyter notebook that can be run/debugged using a single host
Python kernel, and the same notebook can also be run on a clus-
ter using many hosts and hardware accelerators as a PySpark ap-
plication. The developer only needs to set a distribution context
parameter that controls which cells to run in the notebook - the
oblivious training function is a single cell used by all the different
distribution contexts. The notebooks can also be parameterized and
run by an external workflow manager (Airflow) in production ML
pipelines, similar to Papermill by Neflix [9].

5 RELATED WORK

Previous work on this topic can be categorized in three dimensions:
Pipeline orchestration, ML lifecycle management and automated
ML (AutoML). Pipeline orchestration covers the aspect of taking
an entire ML pipeline into production, which includes data prepa-
ration and engineering, modeling, training, serving inference and
managing the deployments. TensorFlow Extended (TFX) [2] is a
TF based platform with the goal of minimizing glue code between
these pipeline steps. Compared to the previous category, ML life-
cycle management is concerned with the iterative nature of the
ML development process. By tracking artifacts, logs and experi-
ments, results can be easily reproduced, making the process more
transparent with respect to the trained models themselves. MLFlow
[10] achieves this by allowing the user to make explicit calls to
log this meta-data. AutoML aims to automate every aspect of the
pipeline. However, due to the high computational requirements,
recent work was focusing on the automation of the separate steps
first. Because many parts of a ML model behave like a black-box
and can be encoded in hyperparameters, one can fall back on search
for optimization of such parameters [3].

6 SUMMARY

In this short paper, we introduced the distribution oblivious training
function for supervised ML and showed how it can be used to
write distribution transparent ML programs. In the Hopsworks
platform, this provides developers with a unified framework and
codebase where Jupyter notebooks can first be developed as single-
host Python programs, then extended to distributed contexts, and
iterative development across single-host and distributed versions
is not just possible, but encouraged. The distribution oblivious
training function can have several benefits for ML systems. It can
(1) enable reductions in technical debt in pipeline orchestration,
(2) enable iterative development between laptops and clusters, and
(3) improve model training lifecycle management by factoring out
explicit logging calls from user code.



Towards Distribution Transparency for Supervised ML With Oblivious Training Functions

ACKNOWLEDGEMENT

This work is supported by the ExtremeEarth! project funded by Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 825258.

REFERENCES

[1] Logical Clocks AB. 2020. Maggy: Asynchronous Distributed Hyperparameter

Optimization Based on Apache Spark. Logical Clocks AB. Retrieved January 15th,

2020 from https://github.com/logicalclocks/maggy

Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria

Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A

tensorflow-based production-scale machine learning platform. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 1387-1395.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2018. Automated

Machine Learning: Methods, Systems, Challenges. Springer. In press, available at

http://automl.org/book.

[4] Mahmoud Ismail, Ermias Gebremeskel, Theofilos Kakantousis, Gautier Berthou,
and Jim Dowling. 2017. Hopsworks: Improving User Experience and Devel-
opment on Hadoop with Scalable, Strongly Consistent Metadata. In 2017 IEEE

[2

—

3

=

MLSys ’20, March 02-04, 2020, Austin, TX, USA

37th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2525-2528.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87-90.

Robert C Martin. 2002. Agile software development: principles, patterns, and
practices. Prentice Hall.

Moritz Johannes Meister. 2019. Maggy: Open-Source Asynchronous Distributed
Hyperparameter Optimization Based on Apache Spark. Master’s thesis.

Andrew S Tanenbaum and Maarten Van Steen. 2007. Distributed systems: princi-
ples and paradigms. Prentice-Hall.

April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How
Data Scientists Use Computational Notebooks for Real-Time Collaboration. Pro-
ceedings of the ACM on Human-Computer Interaction 3, CSCW (2019), 1-30.
Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data
Eng. Bull. 41, 4 (2018), 39-45.

Project website: http://earthanalytics.eu.


https://github.com/logicalclocks/maggy

	Abstract
	1 Introduction
	2 Distribution Transparency in ML
	3 Distribution Oblivious Training Function
	4 Unified Execution Framework with Jupyter Notebooks on Hopsworks
	5 Related Work
	6 Summary
	References

