
Implicit Provenance for Machine Learning Artifacts
Alexandru A. Ormenisan

aaor@kth.se
KTH - Royal Institute of Technology

Logical Clocks
Stockholm, Sweden

Mahmoud Ismail
maism@kth.se

KTH - Royal Institute of Technology
Logical Clocks

Stockholm, Sweden

Seif Haridi
haridi@kth.se

KTH - Royal Institute of Technology
Stockholm, Sweden

Jim Dowling
jdowling@kth.se

KTH - Royal Institute of Technology
Logical Clocks

Stockholm, Sweden

ABSTRACT
Machine learning (ML) presents new challenges for reproducible
software engineering, as the artifacts required for repeatably train-
ing models are not just versioned code, but also hyperparameters,
code dependencies, and the exact version of the training data. Ex-
isting systems for tracking the lineage of ML artifacts, such as
TensorFlow Extended or MLFlow, are invasive, requiring develop-
ers to refactor their code that now is controlled by the external
system. In this paper, we present an alternative approach, we call
implicit provenance, where we instrument a distributed file system
and APIs to capture changes to ML artifacts, that, along with file
naming conventions, mean that full lineage can be tracked for Ten-
sorFlow/Keras/Pytorch programs without requiring code changes.
We address challenges related to adding strongly consistent meta-
data extensions to the distributed file system, while minimizing
provenance overhead, and ensuring transparent eventual consis-
tent replication of extended metadata to an efficient search engine,
Elasticsearch. Our provenance framework is integrated into the
open-source Hopsworks framework, and used in production to
enable full provenance for end-to-end machine learning pipelines.

1 INTRODUCTION
Modern software engineering methodologies, such as agile and
test-driven development, strive to continuously deliver new ver-
sions of stable working systems by automated building and testing
of incremental changes to software. Machine learning (ML) is a
relatively new software engineering discipline, where we strive to
continuously deliver new versions of models, and, in the event of
performance, security, or behavioural regressions of a model, be
able to discern the source of those regressions by investigating all
parts of the model’s lineage from the code, its dependencies, and
the features used to train the model. In addition, the provenance
information for all ML artifacts used to train models is important
for model governance, interpretability, debugging, and sharing of
artifacts between teams.

Machine learning applications run as pipelines that ingest data
from a source, such as a data lake, and compute features, discover
hyperparameters, train model(s), validate and deploy model(s).
Pipelines typically run on workflow engines, such as AirFlow [1],
TensorFlow Extended [3] , MLFlow [14], KubeFlow [8], andArgo [2].

2 PROVENANCE TRANSPARENCY
Existing approaches to model provenance and governance involve
a generic API-based instrumentation approach, where each step in
a workflow is logged in a database to act as a recorded history of the
execution. On one hand this approach allows for a very flexible use,
where the user can determine exactly what she wants to log. On
the other hand, it is prone to users omitting to log certain artifacts,
only logging use of artifacts in one stage of the pipeline but not
another or having parts of the code that need to be changed when
they want to switch to a different provenance tracking system. We
call, this type of provenance tracking, explicit provenance, since
the users have to explicitly point what to log in the provenance. In
our platform, we decided to track provenance at a lower level, at
the platform layer, in a transparent and non-invasive way towards
the user’s machine learning code. We call this provenance tracking
method implicit provenance, because we log the operations at the
filesystem and resource manager level, and thus we implicitly gain
the provenance information without interfering with the ML code.
By transferring the provenance tracking responsibility from the user
to the platform, we reduce the probability of inconsistent handling
of provenance tracking between different stages, pipelines and even
different users.

3 HOPSWORKS PROVENANCE TRACKING
At its simplest, a pipeline stage can be defined as an application,
running user defined code in a well defined environment, based
on a set of inputs including data and parameters and producing
output data. In order to allow for a robust pipeline, resilient to
failures and also to simplify our current implementation, we con-
sider all input and output data as being persisted files or directories
on the filesystem. Additionally, the environment (installed/used
libraries) in which applications are run is persisted and updated on
the filesystem as a json file. In order to allow for a slightly more
flexible setup, we also allow a metadata layer where we can attach
metadata to existing files.

Considering the above simplification of pipeline stages, the rele-
vant components of a platform capable of running a ML pipeline
involves a resource manager for running applications capable of
analysing and processing Big Data, a distributed file system capable
of storing Big Data and a metadata layer. In the case of our plat-
form, Hopsworks [6], as we can see in Figure 1 we use HopsYARN,



MLSys ’20, March 02–04, 2020, Austin, TX, USA Alexandru A. Ormenisan, Mahmoud Ismail, Seif Haridi, and Jim Dowling

Metadata Layer HopsYARN

HopsFS

X.509 based
file access

ML Applications

File Operations 
Log

ePipe
databus Elasticsearch

Figure 1: Hopsworks Provenance Architecture.

a modified version of YARN, as a resource manager, HopsFS [10], a
modified version of HDFS [4], as a filesystem and a metadata layer
based on HDFS Extended Attributes.

The metadata layer, based on the HDFS Extended Attributes
mechanism, allows users to attach metadata to files. The file opera-
tions for attaching, updating and removing metadata is thus tightly
coupled with the filesystem and is part of the set of operations that
can be performed on files. As such, tracking provenance in the meta-
data layer is reduced to tracking provenance at the filesystem level.
Another benefit we get from this mechanism is consistent metadata.
As the operations for metadata operations are actually file system
operations the files and metadata itself are always kept consistent
and deleting the file for example, will also remove the attached
metadata. As we can see in Figure 1 file operations including our
extended metadata operations are logged and then asynchronously
replicated by our databus service ePipe [7], to a consistent replica
in Elasticsearch [5], for full text search capabilities.

At the resource manager level, the main provenance tracking
mechanism is related to identifying exactly who access the files.
The who in this case is which application and on which user’s
behalf the application is performing file operations. Our modified
version of YARN accesses files by using X.509 certificates which
contain the userId and applicationId.

zApplication ApplicationFile
Output Input

Application - Execution 3

Application - Execution 2
Application - Execution 1

Environment Configuration File

Input Files Temporary Files Output Files
Input File

Output
File

Temporary
File

Application

Figure 2: Contexts around files and applications.

At the file system level, we track CRUD operations as well as
Extended Attribute operations. These operations are logged in our
internal Mysql Cluster [9] database. As a distributed file system,
HopsFS has multiple namenodes performing the file system oper-
ations. Thus, in order to extract a usable file lineage we require
ordering of the file operations and this is achieved with the help of
logical clocks. In order to have minimal overhead on performance,
the logical clocks are implemented on a per inode level. This mecha-
nism allows us to have the history of changes to a file as an ordered
stream of events persisted in our log. The application identifier
present in each of the file operations provides us with additional
context. As we can see in Figure 2 this context allows us to infer
additional dependencies between files, files and application, and

applications. Old lineage is archived on the filesystem when trying
to reduce the size of the provenance log.

Once input and output files are determined, we rely on two
mechanism to translate this to Machine Learning artifacts. The first
mechanism is the usage of location patterns. These locations pat-
terns can be defined within out platform as filesystem paths where
particular artifact types, such as models, features or experiments
are saved. If location patterns are not used, the user can chose to
use our metadata layer in the form of explicit provenance within
the code itself, or they can tag the artifacts in our dataset browser
after the execution of the application when the input and output
files are presented to her.

4 USE CASES
The implicit provenance extracted from the executions of applica-
tions together with the tracking of file system operations, including
the metadata layer tagging mechanism allows us to provide enough
lineage information on the files to discover relevant dependencies
for most common use cases. Using the implicit provenance we can
detect changes to the artifacts of interest in order to trigger au-
tomatic pipeline execution, warning or suggestions for garbage
collection. Having a context around applications and files can help
in developing, understanding and debugging new pipelines. Having
a full history of file changes from different pipelines as well a clear
identifier for the issuer of operations allows us to easily support
Data Governance and Auditing related use cases. With clear depen-
dencies for each of the stages of a pipeline, we can easily reproduce
results or inform the user that a change occurred that might end up
with results that might be logically different from previous runs.

5 RELATEDWORK
ModelDB was the first model management platform that had sig-
nificant adoption [13]. The model governance work from Sridhar
et al, introduces an interesting abstraction, the Intelligence Overlay
Network, as a logical layer that is used to orchestrate ML workflows
and store the creation path, subsequent usage, and consequent out-
comes of ML models [12]. This approach, however, has no visibility
of the internal ML pipeline stages, and whole training pipelines
execute as only a single step in their provenance graphs. The use of
metadata stores for tracking provenance is present in well known
systems with MLFlow [14] requiring users to log operations on
demand, TensorFlow Extended(TFX) [3] including the metadata
logging as part of the calls to their libraries and the automatic meta-
data logging through extractors embedded in the user’s code in the
work of Schelte et al [11].

6 SUMMARY
In this paper, we described the provenance tracking mechanism
used in Hopsworks. The implicit provenance is a novel system that
is transparent and non-intrusive to user code and applies universally
to all applications and file accesses, removing the human element
as a possible source of error or omission when logging provenance.
Provenance is tracked within the resource manager, the file system
and the metadata layer and thus can accommodate running any
application in any of the supported machine learning frameworks
with no change to the code.



Implicit Provenance for Machine Learning Artifacts MLSys ’20, March 02–04, 2020, Austin, TX, USA

ACKNOWLEDGMENTS
This work is supported by the ExtremeEarth1 project funded by Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 825258.

REFERENCES
[1] Airflow [n.d.]. Apache Airflow. https://airflow.apache.org. [Online; accessed

16-January-2020].
[2] Argo [n.d.]. Argo. https://argoproj.github.io/. [Online; accessed 16-January-

2020].
[3] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria

Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensorflow-based production-scale machine learning platform. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1387–1395.

[4] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop Apache Project
53, 1-13 (2008), 2.

[5] Elasticsearch [n.d.]. Elasticsearch. https://www.elastic.co/products/elasticsearch.
[Online; accessed 16-January-2020].

[6] Mahmoud Ismail, Ermias Gebremeskel, Theofilos Kakantousis, Gautier Berthou,
and Jim Dowling. 2017. Hopsworks: Improving User Experience and Devel-
opment on Hadoop with Scalable, Strongly Consistent Metadata. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2525–2528.

[7] Mahmoud Ismail, Mikael Ronström, Seif Haridi, and Jim Dowling. 2019. ePipe:
Near Real-Time Polyglot Persistence of HopsFS Metadata. In 19th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2019,
Larnaca, Cyprus, May 14-May 17, 2019. 92–101.

[8] Kubeflow [n.d.]. Kubeflow. https://www.kubeflow.org/. [Online; accessed
16-January-2020].

[9] MySQL Cluster [n.d.]. MySQL Cluster CGE. http://www.mysql.com/products/
cluster/. [Online; accessed 16-January-2020].

[10] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,
and Mikael Ronström. 2017. Hopsfs: Scaling hierarchical file system metadata
using newsql databases. In 15th {USENIX} Conference on File and Storage Tech-
nologies ({FAST} 17). 89–104.

[11] Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, and
Stephan Seufert. 2017. Automatically tracking metadata and provenance of
machine learning experiments. In Machine Learning Systems workshop at NIPS.

[12] Vinay Sridhar, Sriram Subramanian, Dulcardo Arteaga, Swaminathan Sundarara-
man, Drew Roselli, and Nisha Talagala. 2018. Model governance: Reducing the
anarchy of production {ML}. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 351–358.

[13] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. Model DB: a system
for machine learning model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. ACM, 14.

[14] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data
Eng. Bull. 41, 4 (2018), 39–45.

1Project website: http://earthanalytics.eu .

https://airflow.apache.org
https://argoproj.github.io/
https://www.elastic.co/products/elasticsearch
https://www.kubeflow.org/
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

	Abstract
	1 Introduction
	2 Provenance Transparency
	3 Hopsworks Provenance Tracking
	4 Use cases
	5 Related Work
	6 Summary
	Acknowledgments
	References

