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Abstract—Distributed hierarchical file systems typically de-
couple the storage of the file system’s metadata from the
data (file system blocks) to enable the scalability of the file
system. This decoupling, however, requires the introduction of
a periodic synchronization protocol to ensure the consistency
of the file system’s metadata and its blocks. Apache HDFS and
HopsFS implement a protocol, called block reporting, where
each data server periodically sends ground truth information
about all its file system blocks to the metadata servers, allowing
the metadata to be synchronized with the actual state of the
data blocks in the file system. The network and processing
overhead of the existing block reporting protocol, however,
increases with cluster size, ultimately limiting cluster scalability.
In this paper, we introduce a new block reporting protocol for
HopsFS that reduces the protocol bandwidth and processing
overhead by up to three orders of magnitude, compared to
HDFS/HopsFS’ existing protocol. Our new protocol removes
a major bottleneck that prevented HopsFS clusters scaling to
tens of thousands of servers.

Keywords-Distributed hierarchical file systems; Distributed
database; Block reporting.

I. INTRODUCTION

Distributed hierarchical file systems typically decouple the

storage of the metadata from the data to allow the file system

to scale, which in turns enables higher performance for the

file system [1]–[4]. However, this decoupling comes at a

price - the metadata and data can become inconsistent due to

failures (disk, network, host failures). The file system needs

a periodic synchronization protocol to ensure consistency

between metadata and data. For example, HDFS [2] stores

its file system metadata in memory in a single server called

the namenode. The metadata contains information about

directories and files, and files’ data which is represented as

blocks that are replicated (three replicas by default) and stored

on servers called datanodes. HDFS addresses the metadata

inconsistency problem by having datanodes periodically,

every 6 hours by default, send a block report containing

information about all replicas stored locally to the namenode

which in turns cross-checks this list with its local metadata

to ensure the consistency of the metadata and the blocks’

data. If inconsistencies arise, the namenode takes actions to

fix those inconsistencies - for example, if a block replica on

a datanode becomes corrupt, then, eventually, the namenode

will create a new block replica by issuing a re-replication

command to one of the datanodes with a non-corrupt replica.

HDFS suffers from scalability bottlenecks due to the

single namenode architecture. HopsFS [1] was developed to

overcome these scalability bottlenecks. HopsFS [1] is a next-

generation distribution of HDFS [2], that adds horizontal

scalability at the metadata layer. It achieves this by decoupling

the metadata storage from the metadata serving. HopsFS

stores the file system metadata normalized in a highly

available, in-memory, distributed, relational database called

Network Database (NDB), a NewSQL storage engine for

MySQL Cluster [5], [6]. This allows HopsFS to support

multiple stateless namenodes to manipulate the metadata

stored in NDB, in parallel, through the use of transactions

and locking primitives to ensure the consistency of the file

system [1]. However, HopsFS has the same block reporting

protocol as HDFS and even though HopsFS has multiple

namenodes, block reports generate a large amount of traffic

on HopsFS’ backend database - in [1], it was shown that

HDFS can process up to 60 block reports per second

with 150 datanodes simultaneously containing 100K blocks,

while HopsFS, with 30 namenodes, can only process 30
block reports per second due to the load on the database.

Moreover, given the default 6 hours block reporting interval,

the namenode(s) has to process 694 blocks per second for

block reporting alone.

The block reporting protocol in HDFS and HopsFS is a

scalability bottleneck, preventing clusters scaling to tens of

thousands of servers in size. According to Shvachko, ”The

internal load for block reports and heartbeat processing on a

10,000-node HDFS cluster with a total storage capacity of

60 PB will consume 30% of the total name-node processing
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Figure 1: The block reporting processing load on the metadata

server(s) grows with increasing cluster size, until it becomes

the dominant workload in exabyte size clusters. The plot is

in log-log scale with base 10.
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capacity” [7]. Figure 1 shows the scalability problem in

terms of the load on the namenode(s) attributable to the

block-reporting protocol as a function of the cluster size.

In this paper, we introduce hbr, a scalable block reporting

protocol, that both correctly synchronize the file system’s

metadata with the data, and reduces the network overhead

compared to HDFS/HopsFS’ block reporting protocol. Our

solution introduces buckets, a logical collection of replicas

in the file system, and three hbr functions:

1) an assignment function that dynamically assigns each

replica in the file system to a specific bucket,

2) a hash function that hashes the replica information to

a fixed size hash,

3) and a hash combiner function that combines the hashes

of all replicas inside a bucket.

In experiments based on a real-world Hadoop workload

from Spotify, hbr provides up to three orders of magnitude

lower block processing overhead and up to three orders of

magnitude reduction in the block report size.

II. BACKGROUND

HopsFS [1] is an open source next-generation distribution

of HDFS that mitigates HDFS scalability bottlenecks by

replacing the single metadata storage layer with a distributed

metadata storage layer. A typical HopsFS cluster consists of

three main components, the data storage servers (datanodes),

the metadata storage (NDB), and the metadata servers

(namenodes), see Figure 2. HopsFS namenodes are stateless

and access the metadata stored in NDB through the use of

transactions. For internal housekeeping of the file system,

HopsFS elects one of the namenodes as a leader using a

leader election protocol [8]. NDB is the default database in

HopsFS. However, HopsFS provides a pluggable data access

layer (DAL) that allows using any other distributed databases

with support for transactions and row-level locking. Files

that are less than a configurable size, 64 KB by default, are

called small files and are stored with the metadata in NDB

to improve their access performance [9]. On the other hand,

files bigger than the small files threshold are split into blocks,

128 MB by default. The files’ blocks are then replicated,

three times by default, into different datanodes on the file

system to ensure high availability of the files.

Internally, HopsFS stores the file system metadata as rows

in tables in NDB. The main three tables are inodes, blocks,

and replicas. The inodes table contains information about

files/directories such as parent, name, permission, size, etc..

The blocks table contains the list of blocks for each file in

the file system. The replicas table contains the locations for

each block in the file system. The file system operations are

implemented as transactions on NDB and are guarded through

the use of locking primitives in HopsFS [1]. HopsFS can be

accessed using both HopsFS and HDFS clients. However,

HopsFS clients are preferable since they can load balance

their requests among all namenodes in the cluster. To write
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Figure 2: Architecture diagram of HopsFS. A typical cluster

consists of a database cluster (NDB), a set of Namenodes

(NNs), and a set of Datanodes (DNs). One Namenode is

elected as leader for internal housekeeping of the file system.

HopsFS and HDFS client can then be used to access the

file system. HopsFS provides a data access layer (DAL) that

allow using other distributed databases. Files are stored based

on their size either in NDB if size is less than 64 KB, or in

the datanodes if the size is larger than 64 KB.

a file to HopsFS, a client first sends a request to its selected

namenode. The namenode then creates the file’s metadata

and stores it in NDB. Once acknowledged, the client requests

a list of datanodes from the namenode to write the first block

of the file. The list of datanodes is returned according to the

file replication level, three by default. Then, the client setup a

chain replication between the three selected datanodes, where

it writes to the first datanode, and then the first datanode

writes to the second and so on. While writing the datanodes

continuously send both a status report and an incremental

block report to the namenode(s) about the currently written,

deleted, and completed block replicas. The client will repeat

the same procedure for any additional blocks of the file. If

a failure happens in one of the datanodes in the pipeline,

then the client will request a new set of datanodes from the

namenode to write the block.

A. Block and Replica States

Throughout the lifetime of a block, the block itself and

its replicas go through a cycle of states. First, the block

is Under Construction when first created. Then, the client

sets up chain replication for the selected datanodes, and

the block’s replicas are now being written ( Replica Being
Written). Next, the replica is marked Finalized when all data

bytes are received and written for that block. Once the client

finishes writing to all replicas, the client closes the current

block and asks for another block if needed to write more

data. At that stage, the block state is Committed, and it will

change to Complete only when the minimum replication level

is reached. That is when the minimum number of datanodes

have reported back Finalized replicas to the namenode(s).

B. Block Reporting Protocol

There are two types of block reports in HopsFS and HDFS:
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1) incremental block reports: the datanode informs the

namenode once a change happens in the state of a

block replica. It is used by the namenode to inform

the clients about the block state. For example, a block

is created and safe to read when it is complete.

2) full block report: the datanode periodically sends a

block report including information about all the blocks’

replicas to the namenode. It is used to synchronize the

replicas and blocks view between the namenode and

the datanodes (where the datanodes are the source of

truth).

HopsFS load balances block reporting across all namen-

odes in the cluster. Before a datanode sends a block report,

it asks the leader namenode where to send the next block

report. All active block report requests are stored in NDB.

The leader namenode assigns the block reports in a round

robin fashion to namenodes, taking into consideration the

load on each namenode.

III. PROBLEM DEFINITION

We need to maintain a consistent and synchronized view

of the data blocks in the file system between the metadata

layer (namenode(s) and NDB) and the data storage layer

(datanodes). The existing protocol for both HDFS and

HopsFS involves the datanodes periodically sending a list

of the blocks it has to the namenode(s) in the cluster. The

list contains information about the blocks such as id, size,

generation timestamp, and replica state. The generation

timestamp is mainly used during recovery, where the block

generation timestamp is increased after failures. The existing

full block reporting protocol has the following shortcomings:

P1: Increasing network bandwidth consumption
The block report size is directly dependent on the number

of blocks in the datanode. A single block requires ≈ 28
bytes, that is, a datanode with 1 million blocks will send

a block report of size 28 Megabytes every 6 hours (default

block reporting interval).

P2: Overloading the metadata storage (NDB)
For each block report, the namenode has to validate the

reported information of the blocks with the current metadata

for those blocks (stored in NDB). That is, assuming a block

report with 1 million blocks, the namenode has to read 1
million rows from NDB with locks to ensure a consistent

view. Moreover, the number of datanodes in the cluster can

potentially grow to thousands of datanodes trying to report

their blocks status to the namenodes. This would overload

NDB, and negatively affect the performance of the whole

file system.

IV. hbr
In this section, we describe hbr, our efficient and scalable

block reporting protocol that overcome the two aforemen-

tioned problems (P1, P2).

A. System Model
We define B as the set of all blocks in the file system.

Similarly, we define R as the set of all replicas. A block bi ∈
B is replicated to n replicas where n is the file replication

factor. That is, ri = {ri,1, ri,2, .., ri,n} where ri ∈ R is

the set of replicas of bi, and the replication factor of bi is

n = |ri|. We define a bucket k as a logical collection of

blocks’ replicas, where a replica r can be part of only one

bucket k. We define K as the set of buckets configured in

the file system. We define an assignment function fassign
to map each replica to a single bucket, see Definition 1.

The assignment function has to satisfy Property 1. For each

block, we hash the block information including block id,

size, generation timestamp, and replica state using a hash

function, fhash, as defined in Definition 2. The hash function

has to satisfy Property 2. Then, for each bucket, we combine

all the hashes for the replicas in this bucket using a bucket

hash combiner function, fcombine, as defined in Definition 3.

The bucket hash combiner function has to satisfy Property 3.
Definition 1 (Bucket assignment function): Given a

replica ri,j ∈ R where ri,j is the replica j of the block bi,
and the number of configured buckets in the system |K|
then k = fassign(ri,j , |K|) where k ∈ K and |k| = 1.

Property 1: Given a block bi ∈ B, ri ∈ R where ri
is the set of replicas for block bi, then ∀ri,x, ri,y ∈ ri
fassign(ri,x, |K|) = fassign(ri,y, |K|). That is, all replicas

of the same block logically maps to the same bucket - even

though the replicas are stored on different datanodes. That

means that updates to any of the replicas of a block will be

local to the same bucket.
Definition 2 (Replica hash function): Given a replica

ri,j ∈ R where ri,j is the replica j of the block bi, then

h = fhash(ri,j)
Property 2: Given two replicas ri,x, rj,y ∈ R where ri,x

is the replica x of the block bi and similarly rj,y is the

replica y of the block bj , then ∀ri,x, rj,y ∈ R, fhash(ri,x) �=
fhash(rj,y)

Definition 3 (Bucket hash combiner function): Given a

bucket k ∈ K, k = {r1, ..., r|k|} where r1 is the first

mapped replica to the bucket and |k| is the number of

replicas in the bucket k, and kh0 = φ where khi is

the combined hash for i replicas in the bucket k, then

∀i ∈ {1, .., |k|}. khi = fcombine(khi−1, fhash(ri))
Property 3: Given a bucket k ∈ K, kh0 = φ, and ∀i ∈

{1, .., |k|}. khi = fcombine(khi−1, fhash(ri)), then khi−1 =
fcombine(khi, fhash(ri)). That is the fcombine function is

invertible.
Then, for each change to the state of the file blocks and

replicas, see Section II-A, we recompute the hash and update

the combined hash for the corresponding bucket. In practice,

we track only the finalized replicas. When a datanode sends

a block report, it sends its current combined hashes for its

buckets to the assigned namenode. The namenode compares

the received combined hashes with the stored bucket hashes.
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If one or more of the bucket hashes does not match, the

namenode asks the datanode to report back all the replicas

within the mismatched buckets. For those buckets where the

hashes match, the block report succeeds for the blocks in

those buckets. For those blocks sent by datanodes for their

mimatched buckets, we fall back to the original HDFS block

reporting protocol - that is, the namenode validates all blocks

received against those stored in NDB.

B. Implementation

We implemented the hbr block reporting protocol in

HopsFS using the functions defined in Section IV-A. We

devised an algorithm for hbr on the datanode and namenode,

in Algorithm 1 and Algorithm 2, respectively. The datanode(s)

and the namenode(s) communicate using an RPC model.

Algorithm 1 describes the hbr protocol from the datanode

perspective. The datanode keeps a map of bucket hashes, hbr,

line 1. We define the utility function UPDATEBUCKETDN

that updates the bucket hash of any replica. It uses the

assignment function, see Definition 1, to assign the replica to

its corresponding bucket, line 18. If the map containing the

bucket hashes, hbr, already contains a hash for that bucket,

then, we use the hash combiner function, see Definition 3,

to combine the hash of the new replica, line 22. Otherwise,

if hbr contains no hash for bucket k, then we insert the

hash of the replica as the combined hash, line 20. Whenever

a replica is added to the datanode, we update the bucket

where the replica logically resides, lines 2-4. Similarly, when

a replica is deleted we use the same UPDATEBUCKETDN

function to remove the replica from the current hash of the

bucket, line 5-7. The UPDATEBUCKETDN works for addition

and deletion since the hash combiner function fcombine is

invertible, see Property 3. The datanode will periodically

send its buckets’ hash map, hbr, to a selected namenode,

lines 8-16. The datanode contacts the leader namenode to get

the selected namenode for that block report. All active block

reports on all namenodes are stored in the metadata storage

(NDB). The leader namenode balances the block reporting

handling across all namenodes. The datanode reconstructs

the buckets’ hash map if it was empty due to datanode restart

before sending the block report, lines 9-13. Since collisions

may arise due to the use of the hash combiner function, we

perform a full block report once every configurable interval,

every 24 hours by default, lines 25-28.

Algorithm 2 describes the hbr protocol from the namenode

perspective. The buckets’ hashes for all datanodes are stored

in the metadata storage (NDB). Once the namenode receives

a block report from a datanode, it iterates through the buckets

and validates that their hashes match the stored hashes, line

1-8. If the reported hashes do not match, then, the namenode

requests the datanode to resend the full block report for that

specific bucket, line 5. The function SENDFULLREPORT-

FORBUCKET uses the vanilla block reporting protocol to

report mismatched buckets and it is omitted for clarity. In

Algorithm 1 Block reporting on datanode side

Require: BRInterval � Block report interval.
Require: FBRInterval � Full block report interval.
Require: LE � leader namenode

1: hbr ← ⊥ � map of bucket hashes

2: upon addition of a new replica r
3: UPDATEBUCKETDN(r)
4: end
5: upon deletion of a replica r
6: UPDATEBUCKETDN(r)
7: end

8: loop every BRInterval
9: if hbr = ⊥ then

10: for r in replicas do
11: UPDATEBUCKEDN(r)
12: end for
13: end if
14: nn← LE.getNextNNToReportTo(thisDN)
15: nn.processReport(hbr)
16: end loop

17: function UPDATEBUCKETDN(r)
18: k ← fassign(r)
19: if hbr[k] = ⊥ then
20: hbr[k]← fhash(r)
21: else
22: hbr[k]← fcombine(hbr[k], fhash(r))
23: end if
24: end function

25: loop every FBRInterval
26: nn← LE.getNextNNToReportTo(thisDN)
27: nn.processReport(replicas)
28: end loop

order to keep the map of datanodes’ bucket hashes up-to-date

and to avoid unnecessary communication due to mismatch,

we update the hashes for the buckets whenever there is an

update to the replicas in the file system. We define the utility

function UPDATEBUCKETNN that updates the bucket hash

for a specific datanode dn with the hash of a finalized replica

r, a replica where all its data has already been received, lines

30-43. The UPDATEBUCKETNN uses the same assignment

function as used in the datanode to get the corresponding

bucket for the supplied replica, line 32. Since the bucket

hashes are stored in the database and are updated by all

namenodes, we use the locking primitives as defined in

HopsFS to ensure the serializability of the updates to the

bucket hashes, lines 33-41.

Similar to the datanode side, we check if there is a

stored hash for that datanode’s bucket and update the bucket

hash accordingly, lines 34-40. The datanodes inform the

namenodes whenever there is an update in the state of a

replica using the incremental block report. Therefore, we

update the associated bucket hash for that replica, lines 9-11.

Moreover, if a file got deleted, then all of its blocks will also

be deleted, thus we update the hashes for the corresponding

datanodes buckets, lines 12-16. So far, we have covered
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most of the cases where a replica is updated. However,

during failure, the client will request a newly updated writing

pipeline from the namenode. In this case, the namenode

needs to update the corresponding bucket hashes for the

old datanodes that were used for writing before failure, line

17-21. Another operation that would require updates to the

bucket hashes of the replicas is the append operation. If

the last block size was less than the default block size of

the file, then, upon append, we need to update the bucket

hashes for the last block’s replicas, lines 22-29. The function

UPDATEBUCKETNN on the namenode side only updates the

hashes for finalized replica in comparison to the function on

the datanode side (UPDATEBUCKETDN) which considers all

replicas when updating the hashes. The reason is that the

datanode has the ground truth information about the replicas,

therefore, it should always report the current state of the

replicas, whatever that may be. Thus, during block reporting,

if a file is being written with replicas that are not finalized yet,

then, the buckets containing these replicas will be marked

invalid and a full block report is required for those buckets.
Choosing the hbr functions: We chose the functions

based on their definitions and their corresponding properties.

First, the assignment function needs to have low computa-

tional complexity on both namenodes and datanodes, with

only the knowledge of the block id and the number of buckets

in the system. For that, the default assignment function is

modulus (%), where the bucket can be derived from the block

id mod the number of buckets in the file system.

fassign(ri,j , |K|) = BlockId(ri,j) % |K| (1)

The modulus function satisfies the Property 1, that is, the

modulus will produce the same bucket id for all replicas of

the same block. Since all replicas of the same block will have

the same block id, then using the modulus of the block id will

return the same bucket id for all replicas of the same block.

Secondly, the hash function needs to produce a fixed size

hash of the block information with low overhead and hard

to compute collisions. The default hash function is SHA1,

where we hash the replica information including block id,

block size, generation stamp, and state.

fhash(ri,j) = SHA1(BlockId(ri,j),
BlockSize(ri,j), GenStamp(ri,j), State(ri,j))

(2)

Thirdly, the hash combiner function needs to preserve the

distribution of the input hashes and to be invertible. The

invertibility is an important aspect since replica deletions

require undoing the combined hash to remove that replica

from the combined hash of the bucket. The default hash

combiner function we use is XOR (⊕).

khi = fcombine(khi−1, fhash(ri)) = khi−1 ⊕ fhash(ri)
(3)

The three functions can be overridden by any other

functions as long as they satisfy the same properties as

discussed for each function in Section IV-A.

Algorithm 2 Block reporting on namenode side

Require: MS � Connection to the metadata storage.

1: upon reception of block report hbr from dn
2: for k, kh in hbr do
3: storedkh←MS.getBucketHash(dn, k)
4: if storedkh = ⊥ or storedkh �= kh then
5: dn.sendFullReportForBucket(k)
6: end if
7: end for
8: end

9: upon reception of incr report for replica r from dn
10: UPDATEBUCKETNN(dn, r)
11: end

12: upon deletion of a block b with replicas R
13: for dn, r in R do
14: UPDATEBUCKETNN(dn, r)
15: end for
16: end

17: upon recovery of a block b with replicas R
18: for dn, r in R do
19: UPDATEBUCKETNN(dn, r)
20: end for
21: end

22: upon append of a file f
23: b← f.getLastBlock()
24: if b.size �= f.getDefaultBlockSize() then
25: for dn, r in b.getReplicas() do
26: UPDATEBUCKETNN(dn, r)
27: end for
28: end if
29: end

30: function UPDATEBUCKETNN(dn, r)
31: if r.state = FINALIZED then
32: k ← fassign(r)
33: MS.lockBucket(k)
34: storedkh←MS.getBucketHash(dn, k)
35: if storedkh = ⊥ then
36: kh← fhash(r)
37: else
38: kh← fcombine(storedkh, fhash(r))
39: end if
40: MS.setBucketHash(dn, k, kh)
41: MS.unlockBucket(k)
42: end if
43: end function

V. EVALUATION

In this section, we present a comparative evaluation of

the vanilla block reporting in HopsFS and hbr. (HDFS

has the same block reporting protocol as HopsFS). All the

experiments were run on PowerEdge R730xd servers(Intel(R)

Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 256 GB RAM, 4

TB 7200 RPM HDDs) connected using a single 10 GbE

network adapter. We deployed NDB, version 7.6.8, on 2

nodes and the data replication degree was set to default, 2.

In all experiments, we used a fixed number of 100 datanodes.

Also, we used a real-world hadoop workload from Spotify to
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generate 1 million blocks on each datanode [1]. In production

deployments, the datanodes send a block report every six

hours by default, and the randomization in the protocol

ensures that the datanodes do not send their block report

to the namenodes at the same time. However, to determine

the maximum throughput and capacity of hbr, we repeatedly

send block reports to the HopsFS namenodes, that is, at

any given time the namenodes will be processing 100 block

reports from different datanodes.

A. Throughput of hbr

In this experiment, we benchmarked the throughput of the

vanilla block reporting protocol and hbr with two different

configurations of 1000 buckets and 2000 buckets, respectively,

with no invalid buckets. Also, we varied the number of

namenodes to show the scalability of both protocols. The

vanilla block reporting can only process 0.25 block reports

per second with one namenode, and the throughput increases

to 0.75 block reports per second with three namenodes, see

Figure 3. The performance of the vanilla block reporting

suffers due to the increased load on the NDB to read the

metadata required for processing the block reports. NDB

is a real-time database which prioritizes short queries over

large index scans returning many rows. More concretely,

large queries that return a large number of rows (potentially

millions of rows) can be frequently preempted by the NDB

kernel to process other concurrent short queries.

Figure 3 shows that hbr delivers up to three orders of

magnitude the throughput of the vanilla block reporting

protocol. We performed two sets of experiments with different

numbers of buckets per datanode. For 1000 buckets per

datanode, hbr performs ≈ 1500 block reports per second

using only one namenode, and the throughput increases up to

≈ 4600 reports per second using three namenodes. Similarly,

for 2000 buckets per datanode, hbr performs around ≈ 800
block reports per namenode which linearly increases to

≈ 2300 block reports per second using three namenodes.

The hbr performance directly depends on the number of

buckets per datanode.

B. Latency of hbr

We compared the latency of both the vanilla block

reporting, and hbr with two configurations 1000 buckets

and 2000 buckets. The vanilla block reporting protocol takes

on average ≈ 80 seconds to process a single block report

containing 1 million blocks, see Figure 4. On the other

hand, hbr takes on average ≈ 20 and ≈ 40 milliseconds to

process a single block reports using 1000 and 2000 buckets

per datanode respectively. Thus, increasing the number of

buckets in the file system increases the latency and decreases

the throughput. In this experiment, all the hashes on the

datanode side and namenode side match. However, in real-

world scenarios, depending on the workload some buckets
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Figure 3: The throughput of the vanilla block reporting and

hbr while varying the number of namenodes in the cluster.

Each block report contains 1 millions blocks. For hbr, we

use two configurations 1000 buckets and 2000 buckets.

on the datanodes and the namenodes may not match, see

Section V-C.

C. Effect of invalid buckets

A mismatch between the bucket hashes on the namenode

and datanode sides can happen due to different reasons

such as failures of the datanode and file being written or

deleted during the block report. Therefore, in this experiment,

we investigated the performance of hbr in the presence

of mismatching buckets. We did the experiment for two

configurations of hbr with 1000 and 2000 buckets per

datanode. Figure 5 shows the throughput of hbr protocol

while varying the number of mismatching buckets per block

report. Each block report contains 1 million blocks. That

is 1000 blocks per bucket for the 1000 buckets setup, and

500 blocks per bucket for the 2000 buckets setup. The 2000
buckets setup delivers higher throughput in the presence of

mismatching buckets since it has less number of blocks to

process. A mismatched bucket requires a full block report for

that bucket to be resent, thus dropping the throughput of the

block reporting protocol. In real-world scenarios, the buckets

mismatch will be minimal since industrial workloads are read
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Figure 4: The average latency to process a block report with

1 million blocks of vanilla block reporting and hbr. For hbr,

we use two configurations 1000 buckets and 2000 buckets.

The Y-axis of the plot is in log scale with base 10.
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number of mismatched buckets during the block report.

heavy where the percentage of create and delete operations

is ≈ 3.45% [1], and the hbr protocol ensures replicating the

state of the blocks’ replicas between the namenode(s) and

the datanode(s).

D. Block Report Size

In this experiment, we compared the actual block report

size for the vanilla block reporting protocol and hbr while

varying the number of blocks in the block report. We used

1000 buckets for hbr. Also, we compared the size while

changing the percentage of invalid buckets in hbr. Figure 6

shows that hbr has a constant block report size ≈ 20KB
compared to the vanilla block reporting where the size goes

up to ≈ 28MB for 1 million blocks. The hbr block report

size depends only on the number of buckets configured in

the file system and the size of the hash used in the fhash
function. The hbr block report size increase while increasing

the percentage of the invalid bucket since we need to send

all the information for the replicas in the invalid buckets as

well.

E. Load on NDB and Namenodes

In this experiment, we show the effect of vanilla block

reporting and hbr on the underlying metadata storage layer
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Figure 6: The block report size as a function of the number of

blocks in the datanode. We compare hbr with 1000 buckets

against the vanilla block reporting. Also, we show the hbr
size in case of invalid buckets. The plot is in log-log scale

with base 10.
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Figure 7: The average CPU utilization per NDB node and

per Namenode that was recorded while running the vanilla

block reporting and hbr with 1000 buckets.

(NDB) and the namenodes themselves. We collected the

CPU and Network utilization while running a throughput

experiment similar to the one introduced in Section V-A.

Figure 7(a) shows the average CPU utilization per NDB

node while varying the number of namenodes in the cluster.

Similarly, Figure 7(b) shows the average CPU utilization per

namenode while varying the number of namenodes in the

cluster. The vanilla block reporting puts more load on NDB

and the namenodes compared to the hbr protocol. This is due

to the large block report size in the vanilla block reporting,

that results in large index scan operations on NDB.

Figure 8(a) shows the average network read throughput

per NDB node while varying the number of namenodes. The

vanilla block reporting incurs higher network read per NDB

since it reads all the replicas from the database to validate.

Even with a higher throughput of hbr, the load is still lower

than the vanilla block reporting since we skip reading all

the replicas and instead we read only the buckets hashes.

Figure 8(b) shows the average network read throughput per

namenode. The hbr protocol incurs a higher load on the

network due to the higher throughput of hbr in comparison to

the vanilla block reporting, see Figure 3. Similarly, Figure 8(c)

and Figure 8(d) shows the average network write throughput

per namenode and NDB respectively. The network write

throughput per namenode in Figure 8(c) corresponds with

the read throughput per NDB node in Figure 8(a). Similarly,

The network write throughput per NDB node in Figure 8(d)

corresponds with the read throughput per namenode in

Figure 8(b).

VI. RELATED WORK

Distributed hierarchical file systems such as GFS [4],

HDFS [2] and HopsFS [1] use a simple block reporting

protocol where data storage servers (datanodes) exchange

their state with the metadata servers (namenodes) to synchro-

nize the file system view of the blocks. Such a protocol will

fail to scale under load when the number of datanodes and
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Figure 8: The average network read and write throughput

per NDB node and per Namenode that was recorded while

running the vanilla block reporting and hbr with 1000

buckets.

the number of blocks per datanode increase.

File systems such as SFS [10], BFS [11], and Tribler [12]

uses merkle trees to reduce the amount of transferred data

between servers. Key value stores such as Dynamo [13] also

uses merkle trees to detect inconsistencies between replicas

quickly and to reduce the amount of transferred data between

servers. A merkle tree [14] is a balanced hash tree where the

leaves are the hashes of data blocks (blocks in case of a file

system). Every non-leaf node is the hash of its respective

children’s hashes. To check if a leaf node is consistent with

the merkle tree, only the branch leading from this leaf node

up to the root is required. However, if a change happens to

any of the leaf nodes, we need to recompute the whole merkle

tree. The design of hbr protocol is inspired by merkle trees.

However, in hbr protocol we use only one level of buckets

hashes, to avoid recalculation of the all buckets hashes when

one replica changes its state.

VII. CONCLUSION

In this paper, we introduced hbr, an efficient and scalable

block reporting protocol. We presented the concept of a

bucket which is a logical collection of replicas in the file

system. We defined three hbr functions to assign each replica

to a bucket, to hash the replica information, and to combine

all the replica hashes in the bucket. Also, we leveraged the

incremental block reporting in HDFS/HopsFS to update the

bucket hash whenever an update happens on the replica state.

In experiments on HopsFS, we show that hbr scales up

to three orders of magnitude better than the vanilla block

reporting protocol. We also showed that hbr has up to three

orders of magnitude lower block report size and latency than

the vanilla block reporting protocol.
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